DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics

Abstract

Metal halide perovskites offer a wide and tunable bandgap, making them promising candidates for top–cell absorbers in tandem photovoltaics. In this work, the authors aim to understand the atomic layer deposition (ALD) precursor–perovskite interactions of the tin oxide ALD system and the role of organic fullerenes at the perovskite–tin oxide interface while establishing a framework for developing alternative perovskite–compatible ALD processes in the future. It is shown, in the case of tin oxide ALD growth with tetrakis(dimethylamino)tin(IV) and water on FA0.83Cs0.17Pb(I0.83Br0.17)3 perovskite, that perovskite stability is most sensitive to metal–organic exposure at elevated temperatures with an onset near 110 °C, resulting in removal of the formamidinium cation. Transitioning from ALD to pulsed–chemical vapor deposition tin oxide growth can minimize the degradation effects. Investigation of fullerenes at the perovskite interface shows that thin fullerene layers offer minor improvements to perovskite stability under ALD conditions, but significant enhancement in carrier extraction. Fullerene materials are undesirable due to fabrication cost and poor mechanical stability. Compositional tuning of the perovskite material can improve the fullerene–free device performance. Furthermore, this method is demonstrated with a bromine–rich perovskite phase to enable an 8.2% efficient perovskite device with all–inorganic extraction layers.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. Stanford University, CA (United States)
  2. Massachusetts Institute of Technology, Cambridge, MA (United States)
Publication Date:
Research Org.:
Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1671800
Alternate Identifier(s):
OSTI ID: 1457065
Grant/Contract Number:  
EE0008167; EE0008154
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 23; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Palmstrom, Axel F., Raiford, James A., Prasanna, Rohit, Bush, Kevin A., Sponseller, Melany, Cheacharoen, Rongrong, Minichetti, Maxmillian C., Bergsman, David S., Leijtens, Tomas, Wang, Hsin-Ping, Bulović, Vladimir, McGehee, Michael D., and Bent, Stacey F. Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics. United States: N. p., 2018. Web. doi:10.1002/aenm.201800591.
Palmstrom, Axel F., Raiford, James A., Prasanna, Rohit, Bush, Kevin A., Sponseller, Melany, Cheacharoen, Rongrong, Minichetti, Maxmillian C., Bergsman, David S., Leijtens, Tomas, Wang, Hsin-Ping, Bulović, Vladimir, McGehee, Michael D., & Bent, Stacey F. Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics. United States. https://doi.org/10.1002/aenm.201800591
Palmstrom, Axel F., Raiford, James A., Prasanna, Rohit, Bush, Kevin A., Sponseller, Melany, Cheacharoen, Rongrong, Minichetti, Maxmillian C., Bergsman, David S., Leijtens, Tomas, Wang, Hsin-Ping, Bulović, Vladimir, McGehee, Michael D., and Bent, Stacey F. Mon . "Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics". United States. https://doi.org/10.1002/aenm.201800591. https://www.osti.gov/servlets/purl/1671800.
@article{osti_1671800,
title = {Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics},
author = {Palmstrom, Axel F. and Raiford, James A. and Prasanna, Rohit and Bush, Kevin A. and Sponseller, Melany and Cheacharoen, Rongrong and Minichetti, Maxmillian C. and Bergsman, David S. and Leijtens, Tomas and Wang, Hsin-Ping and Bulović, Vladimir and McGehee, Michael D. and Bent, Stacey F.},
abstractNote = {Metal halide perovskites offer a wide and tunable bandgap, making them promising candidates for top–cell absorbers in tandem photovoltaics. In this work, the authors aim to understand the atomic layer deposition (ALD) precursor–perovskite interactions of the tin oxide ALD system and the role of organic fullerenes at the perovskite–tin oxide interface while establishing a framework for developing alternative perovskite–compatible ALD processes in the future. It is shown, in the case of tin oxide ALD growth with tetrakis(dimethylamino)tin(IV) and water on FA0.83Cs0.17Pb(I0.83Br0.17)3 perovskite, that perovskite stability is most sensitive to metal–organic exposure at elevated temperatures with an onset near 110 °C, resulting in removal of the formamidinium cation. Transitioning from ALD to pulsed–chemical vapor deposition tin oxide growth can minimize the degradation effects. Investigation of fullerenes at the perovskite interface shows that thin fullerene layers offer minor improvements to perovskite stability under ALD conditions, but significant enhancement in carrier extraction. Fullerene materials are undesirable due to fabrication cost and poor mechanical stability. Compositional tuning of the perovskite material can improve the fullerene–free device performance. Furthermore, this method is demonstrated with a bromine–rich perovskite phase to enable an 8.2% efficient perovskite device with all–inorganic extraction layers.},
doi = {10.1002/aenm.201800591},
journal = {Advanced Energy Materials},
number = 23,
volume = 8,
place = {United States},
year = {Mon Jun 25 00:00:00 EDT 2018},
month = {Mon Jun 25 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: X-ray diffraction pattern of perovskite thin films under specific reactor conditions for (a) no organic extraction layers and (b) with a 1nm LiF and 10 nm C60 layer. (c) The ratio of the PbI2 (001) and perovskite (100) peak integrated areas are plotted illustrating the relative extent ofmore » perovskite degradation under reactor conditions. (d) XRD pattern of Cs17/Br17 perovskite films with and without a 6 nm SnO2 film deposited by ALD at 100 °C vacuum annealed at 150 °C for 1 hour.« less

Save / Share:

Works referenced in this record:

The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite
journal, March 2014

  • Kim, Jongseob; Lee, Sung-Hoon; Lee, Jung Hoon
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 8
  • DOI: 10.1021/jz500370k

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
journal, March 2013

  • Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck
  • Nano Letters, Vol. 13, Issue 4, p. 1764-1769
  • DOI: 10.1021/nl400349b

Radiation damage and transmission enhancement in surface-emitting organic light-emitting diodes
journal, May 2002


Advances in the Application of Atomic Layer Deposition for Organometal Halide Perovskite Solar Cells
journal, September 2016


High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture
journal, January 2017

  • Koushik, Dibyashree; Verhees, Wiljan J. H.; Kuang, Yinghuan
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02687G

23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
journal, February 2017

  • Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.9

The Renaissance of fullerenes with perovskite solar cells
journal, November 2017


Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells
journal, January 2018

  • Turren-Cruz, Silver-Hamill; Saliba, Michael; Mayer, Matthew T.
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE02901B

Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
journal, June 2017


Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency
journal, April 2017

  • Duong, The; Wu, YiLiang; Shen, Heping
  • Advanced Energy Materials, Vol. 7, Issue 14
  • DOI: 10.1002/aenm.201700228

Linear Network Model of Gene Regulation for the Yeast Cell Cycle
journal, March 2004

  • Chang No, Yoon; Seung Kee, Han; Hak Yong, Kim
  • Journal of the Korean Physical Society, Vol. 44, Issue 3
  • DOI: 10.3938/jkps.44.638

Interface engineering of highly efficient perovskite solar cells
journal, July 2014


Transparent organic light emitting devices
journal, May 1996

  • Gu, G.; Bulović, V.; Burrows, P. E.
  • Applied Physics Letters, Vol. 68, Issue 19
  • DOI: 10.1063/1.116196

Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment
journal, January 2011

  • Azzopardi, Brian; Emmott, Christopher J. M.; Urbina, Antonio
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01766g

Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
journal, December 2014

  • Shao, Yuchuan; Xiao, Zhengguo; Bi, Cheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6784

Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells
journal, September 2013

  • Eperon, Giles E.; Burlakov, Victor M.; Docampo, Pablo
  • Advanced Functional Materials, Vol. 24, Issue 1, p. 151-157
  • DOI: 10.1002/adfm.201302090

Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
journal, January 2014

  • Eperon, Giles E.; Stranks, Samuel D.; Menelaou, Christopher
  • Energy & Environmental Science, Vol. 7, Issue 3
  • DOI: 10.1039/c3ee43822h

Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells
journal, June 2014

  • Chen, Qi; Zhou, Huanping; Song, Tze-Bin
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501838y

Mechanical integrity of solution-processed perovskite solar cells
journal, December 2016


Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges
journal, January 2017

  • Zardetto, V.; Williams, B. L.; Perrotta, A.
  • Sustainable Energy & Fuels, Vol. 1, Issue 1
  • DOI: 10.1039/C6SE00076B

A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques
journal, January 2017

  • Song, Zhaoning; McElvany, Chad L.; Phillips, Adam B.
  • Energy & Environmental Science, Vol. 10, Issue 6
  • DOI: 10.1039/C7EE00757D

Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics
journal, August 2017

  • Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b04981

Organometal halide perovskite solar cells: degradation and stability
journal, January 2016

  • Berhe, Taame Abraha; Su, Wei-Nien; Chen, Ching-Hsiang
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE02733K

Semi-transparent perovskite solar cells for tandems with silicon and CIGS
journal, January 2015

  • Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE03322A

Highly efficient planar perovskite solar cells through band alignment engineering
journal, January 2015

  • Correa Baena, Juan Pablo; Steier, Ludmilla; Tress, Wolfgang
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02608C

Transparent Conducting Oxides for Photovoltaics
journal, March 2007

  • Fortunato, Elvira; Ginley, David; Hosono, Hideo
  • MRS Bulletin, Vol. 32, Issue 03, p. 242-247
  • DOI: 10.1557/mrs2007.29

A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families
journal, October 2016

  • Conings, Bert; Babayigit, Aslihan; Klug, Matthew T.
  • Advanced Materials, Vol. 28, Issue 48
  • DOI: 10.1002/adma.201603747

Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells
journal, January 2016

  • Jesper Jacobsson, T.; Correa-Baena, Juan-Pablo; Pazoki, Meysam
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C6EE00030D

Atomistic origins of CH 3 NH 3 PbI 3 degradation to PbI 2 in vacuum
journal, March 2015

  • Deretzis, I.; Alberti, A.; Pellegrino, G.
  • Applied Physics Letters, Vol. 106, Issue 13
  • DOI: 10.1063/1.4916821

Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design
journal, November 2016


Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance
journal, March 2014

  • De Wolf, Stefaan; Holovsky, Jakub; Moon, Soo-Jin
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 6
  • DOI: 10.1021/jz500279b

Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes
journal, July 2015

  • Kato, Yuichi; Ono, Luis K.; Lee, Michael V.
  • Advanced Materials Interfaces, Vol. 2, Issue 13
  • DOI: 10.1002/admi.201500195

The surface and materials science of tin oxide
journal, January 2005


Review of recent progress in chemical stability of perovskite solar cells
journal, December 2014

  • Niu, Guangda; Guo, Xudong; Wang, Liduo
  • Journal of Materials Chemistry A, Vol. 3, Issue 17, p. 8970-8980
  • DOI: 10.1039/C4TA04994B

Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells
journal, January 2017

  • Correa-Baena, Juan-Pablo; Tress, Wolfgang; Domanski, Konrad
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00421D

Opportunities of Atomic Layer Deposition for Perovskite Solar Cells
journal, September 2015

  • Zardetto, V.; Di Giacomo, F.; Mohammed, M. A.
  • ECS Transactions, Vol. 69, Issue 7
  • DOI: 10.1149/06907.0015ecst

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber
journal, October 2013

  • Stranks, S. D.; Eperon, G. E.; Grancini, G.
  • Science, Vol. 342, Issue 6156, p. 341-344
  • DOI: 10.1126/science.1243982

Sputtered rear electrode with broadband transparency for perovskite solar cells
journal, October 2015


Thin film characterization of zinc tin oxide deposited by thermal atomic layer deposition
journal, April 2014


Room-Temperature Atomic Layer Deposition of Al 2 O 3 : Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells
journal, December 2016


Effects of Deposition Temperature on the Device Characteristics of Oxide Thin-Film Transistors Using In–Ga–Zn–O Active Channels Prepared by Atomic-Layer Deposition
journal, June 2017

  • Yoon, Sung-Min; Seong, Nak-Jin; Choi, Kyujeong
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 27
  • DOI: 10.1021/acsami.7b04637

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Atomic Layer Deposition of Electron Selective SnO x and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance
journal, August 2017

  • Hultqvist, Adam; Aitola, Kerttu; Sveinbjörnsson, Kári
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 35
  • DOI: 10.1021/acsami.7b07627

Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells
journal, January 2013

  • Lee, Yun Seog; Heo, Jaeyeong; Siah, Sin Cheng
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee24461j

Chemical Vapor Deposition of TiN from Tetrakis(dimethylamido)titanium and Ammonia:  Kinetics and Mechanistic Studies of the Gas-Phase Chemistry
journal, January 1996

  • Weiller, Bruce H.
  • Journal of the American Chemical Society, Vol. 118, Issue 21
  • DOI: 10.1021/ja953468o

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling
journal, January 2018

  • Cheacharoen, Rongrong; Rolston, Nicholas; Harwood, Duncan
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE02564E

Low-Pressure Deposition of TiN Thin Films from a Tetrakis(dimethylamido)titanium Precursor
journal, May 1995

  • Truong, C. M.; Chen, P. J.; Corneille, J. S.
  • The Journal of Physical Chemistry, Vol. 99, Issue 21
  • DOI: 10.1021/j100021a059

Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm 2
journal, December 2015

  • Werner, Jérémie; Weng, Ching-Hsun; Walter, Arnaud
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 1
  • DOI: 10.1021/acs.jpclett.5b02686

Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition
journal, January 2015

  • Dong, Xu; Fang, Xiang; Lv, Minghang
  • Journal of Materials Chemistry A, Vol. 3, Issue 10, p. 5360-5367
  • DOI: 10.1039/C4TA06128D

Perovskite solar cells employing organic charge-transport layers
journal, December 2013


Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
journal, December 2013


Stability of Metal Halide Perovskite Solar Cells
journal, September 2015

  • Leijtens, Tomas; Eperon, Giles E.; Noel, Nakita K.
  • Advanced Energy Materials, Vol. 5, Issue 20
  • DOI: 10.1002/aenm.201500963

Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
text, January 2014

  • Zhengguo, Xio,; Yuchuan, Shao,; Jinsong, Huang,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/kpp6-9914

Perovskite-perovskite tandem photovoltaics with optimized bandgaps
text, January 2016


Works referencing / citing this record:

Enhanced Nucleation of Atomic Layer Deposited Contacts Improves Operational Stability of Perovskite Solar Cells in Air
journal, October 2019

  • Raiford, James A.; Boyd, Caleb C.; Palmstrom, Axel F.
  • Advanced Energy Materials, Vol. 9, Issue 47
  • DOI: 10.1002/aenm.201902353

Atomic Layer Deposition of Functional Layers in Planar Perovskite Solar Cells
journal, October 2019

  • Brinkmann, Kai Oliver; Gahlmann, Tobias; Riedl, Thomas
  • Solar RRL, Vol. 4, Issue 1
  • DOI: 10.1002/solr.201900332

Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems
journal, March 2020


Chemical Analysis of the Interface between Hybrid Organic–Inorganic Perovskite and Atomic Layer Deposited Al 2 O 3
journal, January 2019

  • Koushik, Dibyashree; Hazendonk, Lotte; Zardetto, Valerio
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 5
  • DOI: 10.1021/acsami.8b18307

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.