skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility

Abstract

In this paper, analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 × increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [2];  [1];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [1];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1670556
Alternate Identifier(s):
OSTI ID: 1333334
Report Number(s):
LLNL-JRNL-694598
Journal ID: ISSN 0031-9007; 823660
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 117; Journal Issue: 22; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Hinkel, D.  E., Berzak Hopkins, L.  F., Ma, T., Ralph, J.  E., Albert, F., Benedetti, L.  R., Celliers, P.  M., Döppner, T., Goyon, C.  S., Izumi, N., Jarrott, L.  C., Khan, S.  F., Kline, J.  L., Kritcher, A.  L., Kyrala, G.  A., Nagel, S.  R., Pak, A.  E., Patel, P., Rosen, M.  D., Rygg, J.  R., Schneider, M.  B., Turnbull, D.  P., Yeamans, C.  B., Callahan, D.  A., and Hurricane, O.  A.. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility. United States: N. p., 2016. Web. https://doi.org/10.1103/physrevlett.117.225002.
Hinkel, D.  E., Berzak Hopkins, L.  F., Ma, T., Ralph, J.  E., Albert, F., Benedetti, L.  R., Celliers, P.  M., Döppner, T., Goyon, C.  S., Izumi, N., Jarrott, L.  C., Khan, S.  F., Kline, J.  L., Kritcher, A.  L., Kyrala, G.  A., Nagel, S.  R., Pak, A.  E., Patel, P., Rosen, M.  D., Rygg, J.  R., Schneider, M.  B., Turnbull, D.  P., Yeamans, C.  B., Callahan, D.  A., & Hurricane, O.  A.. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility. United States. https://doi.org/10.1103/physrevlett.117.225002
Hinkel, D.  E., Berzak Hopkins, L.  F., Ma, T., Ralph, J.  E., Albert, F., Benedetti, L.  R., Celliers, P.  M., Döppner, T., Goyon, C.  S., Izumi, N., Jarrott, L.  C., Khan, S.  F., Kline, J.  L., Kritcher, A.  L., Kyrala, G.  A., Nagel, S.  R., Pak, A.  E., Patel, P., Rosen, M.  D., Rygg, J.  R., Schneider, M.  B., Turnbull, D.  P., Yeamans, C.  B., Callahan, D.  A., and Hurricane, O.  A.. Wed . "Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility". United States. https://doi.org/10.1103/physrevlett.117.225002. https://www.osti.gov/servlets/purl/1670556.
@article{osti_1670556,
title = {Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility},
author = {Hinkel, D.  E. and Berzak Hopkins, L.  F. and Ma, T. and Ralph, J.  E. and Albert, F. and Benedetti, L.  R. and Celliers, P.  M. and Döppner, T. and Goyon, C.  S. and Izumi, N. and Jarrott, L.  C. and Khan, S.  F. and Kline, J.  L. and Kritcher, A.  L. and Kyrala, G.  A. and Nagel, S.  R. and Pak, A.  E. and Patel, P. and Rosen, M.  D. and Rygg, J.  R. and Schneider, M.  B. and Turnbull, D.  P. and Yeamans, C.  B. and Callahan, D.  A. and Hurricane, O.  A.},
abstractNote = {In this paper, analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 × increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.},
doi = {10.1103/physrevlett.117.225002},
journal = {Physical Review Letters},
number = 22,
volume = 117,
place = {United States},
year = {2016},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: (a) A conventional hohlraum for High Foot implosions is filled with He gas at high density (1.6 mg/cc), through which the inner beams struggle to propagate. To compensate, we utilize CBET to transfer energy from outer to inner beams. SRS occurs along the inner beams, generates hot electrons,more » and exacerbates drive asymmetry. (b) The new hohlraum for High Foot implosions is longer, larger and fielded at lower gas fill density (0.6 mg/cc). This produces less SRS along the inner beams, and mitigates the need for CBET.« less

Save / Share:

Works referenced in this record:

Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments
journal, September 2011

  • Dewald, E. L.; Milovich, J.; Thomas, C.
  • Physics of Plasmas, Vol. 18, Issue 9
  • DOI: 10.1063/1.3624497

Neutron activation diagnostics at the National Ignition Facility (invited)
journal, October 2012

  • Bleuel, D. L.; Yeamans, C. B.; Bernstein, L. A.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733741

First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Enhanced NIF neutron activation diagnostics
journal, October 2012

  • Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4739230

High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer
journal, January 2009


2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Theory of stimulated scattering processes in laser-irradiated plasmas
journal, January 1975

  • Forslund, D. W.; Kindel, J. M.; Lindman, E. L.
  • Physics of Fluids, Vol. 18, Issue 8
  • DOI: 10.1063/1.861248

Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Parametric instabilities of electromagnetic waves in plasmas
journal, January 1974


Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)
journal, November 2014

  • Hohenberger, M.; Albert, F.; Palmer, N. E.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4890537

    Works referencing / citing this record:

    Laser-direct-drive program: Promise, challenge, and path forward
    journal, March 2017

    • Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
    • Matter and Radiation at Extremes, Vol. 2, Issue 2
    • DOI: 10.1016/j.mre.2017.03.001

    Impact of the Langdon effect on crossed-beam energy transfer
    journal, December 2019


    Improving ICF implosion performance with alternative capsule supports
    journal, May 2017

    • Weber, C. R.; Casey, D. T.; Clark, D. S.
    • Physics of Plasmas, Vol. 24, Issue 5
    • DOI: 10.1063/1.4977536

    Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
    journal, May 2017

    • Farmer, W. A.; Koning, J. M.; Strozzi, D. J.
    • Physics of Plasmas, Vol. 24, Issue 5
    • DOI: 10.1063/1.4983140

    Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility
    journal, May 2017

    • Simakov, A. N.; Wilson, D. C.; Yi, S. A.
    • Physics of Plasmas, Vol. 24, Issue 5
    • DOI: 10.1063/1.4983141

    The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility
    journal, May 2017

    • Hall, G. N.; Jones, O. S.; Strozzi, D. J.
    • Physics of Plasmas, Vol. 24, Issue 5
    • DOI: 10.1063/1.4983142

    The physics of long- and intermediate-wavelength asymmetries of the hot spot: Compression hydrodynamics and energetics
    journal, October 2017

    • Bose, A.; Betti, R.; Shvarts, D.
    • Physics of Plasmas, Vol. 24, Issue 10
    • DOI: 10.1063/1.4995250

    Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility
    journal, January 2018

    • Zha, Weiyi; Yang, Dong; Xu, Tao
    • Review of Scientific Instruments, Vol. 89, Issue 1
    • DOI: 10.1063/1.5005501

    Hollow wall to stabilize and enhance ignition hohlraums
    journal, January 2018

    • Vandenboomgaerde, M.; Grisollet, A.; Bonnefille, M.
    • Physics of Plasmas, Vol. 25, Issue 1
    • DOI: 10.1063/1.5008669

    The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility
    journal, January 2018

    • Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.
    • Physics of Plasmas, Vol. 25, Issue 1
    • DOI: 10.1063/1.5010922

    Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
    journal, March 2018

    • Clark, D. S.; Kritcher, A. L.; Yi, S. A.
    • Physics of Plasmas, Vol. 25, Issue 3
    • DOI: 10.1063/1.5016874

    Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators
    journal, May 2018

    • Kritcher, A. L.; Clark, D.; Haan, S.
    • Physics of Plasmas, Vol. 25, Issue 5
    • DOI: 10.1063/1.5018000

    Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser
    journal, May 2018

    • Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.
    • Physics of Plasmas, Vol. 25, Issue 5
    • DOI: 10.1063/1.5020057

    The influence of hohlraum dynamics on implosion symmetry in indirect drive inertial confinement fusion experiments
    journal, August 2018

    • Ralph, J. E.; Landen, O.; Divol, L.
    • Physics of Plasmas, Vol. 25, Issue 8
    • DOI: 10.1063/1.5023008

    Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility
    journal, October 2018

    • Zylstra, A. B.; Yi, S. A.; MacLaren, S.
    • Physics of Plasmas, Vol. 25, Issue 10
    • DOI: 10.1063/1.5041285

    Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility
    journal, January 2019

    • Berger, R. L.; Thomas, C. A.; Baker, K. L.
    • Physics of Plasmas, Vol. 26, Issue 1
    • DOI: 10.1063/1.5079234

    Approaching a burning plasma on the NIF
    journal, May 2019

    • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
    • Physics of Plasmas, Vol. 26, Issue 5
    • DOI: 10.1063/1.5087256

    Implosion performance of subscale beryllium capsules on the NIF
    journal, May 2019

    • Zylstra, A. B.; MacLaren, S.; Yi, S. A.
    • Physics of Plasmas, Vol. 26, Issue 5
    • DOI: 10.1063/1.5098319

    Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF)
    journal, November 2018

    • Hopkins, L. Berzak; LePape, S.; Divol, L.
    • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
    • DOI: 10.1088/1361-6587/aad97e

    Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility
    journal, November 2018

    • Hurricane, O. A.; Callahan, D. A.; Springer, P. T.
    • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
    • DOI: 10.1088/1361-6587/aaed71

    Modeling and projecting implosion performance for the National Ignition Facility
    journal, December 2018


    Optical Smoothing with Reduced FM-to-AM Conversion in High-Power Lasers Using Spectral Distribution
    journal, November 2019


    Energy transfer between lasers in low-gas-fill-density hohlraums
    journal, November 2018


    First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility
    journal, April 2018


    Development of the real-time neutron activation diagnostic system for NIF
    conference, September 2017

    • Root, Jaben; Jedlovec, Donald R.; Edwards, Ellen R.
    • Target Diagnostics Physics and Engineering for Inertial Confinement Fusion VI
    • DOI: 10.1117/12.2274343

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.