DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces

Abstract

Using synchrotron X-rays the LiTFSI/H2O electrolyte interfacial decomposition pathways in the „water-in-salt“ and „salt-in-water“ regimes are investigated. The resultant photoelectron-induced reduction was revealed to be concentration-dependent interfacial chemistry that only occurs among closely contact ion-pairs, which constitutes the rationale behind the „water-in-salt“ concept.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [2]; ORCiD logo [5];  [6];  [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11]
  1. SSRL Materials Science Division SLAC National Accelerator Laboratory Menlo Park CA 94025 USA;SLAC National Accelerator Laboratory Joint Center for Energy Storage Research (JCESR) Lemont IL 60439 USA;Department Chemie Universität Paderborn 33098 Paderborn Germany
  2. SSRL Materials Science Division SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
  3. SSRL Materials Science Division SLAC National Accelerator Laboratory Menlo Park CA 94025 USA;SLAC National Accelerator Laboratory Joint Center for Energy Storage Research (JCESR) Lemont IL 60439 USA;Laboratory for Electrochemical Energy Systems Department of Mechanical and Process Engineering ETH Zürich 8092 Zürich Switzerland
  4. SSRL Materials Science Division SLAC National Accelerator Laboratory Menlo Park CA 94025 USA;SLAC National Accelerator Laboratory Joint Center for Energy Storage Research (JCESR) Lemont IL 60439 USA
  5. Department of Chemical Engineering Stanford University Stanford USA
  6. Department of Chemistry Stanford University Stanford USA
  7. Joint Center for Energy Storage Research Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
  8. Joint Center for Energy Storage Research Lawrence Berkeley National Laboratory Berkeley CA 94720 USA;The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
  9. Energy Storage Branch Sensor and Electron Devices Directorate U.S. Army Research Laboratory Adelphi 20783 USA
  10. Chemistry Division Brookhaven National Laboratory Upton NY 11973 USA
  11. SSRL Materials Science Division SLAC National Accelerator Laboratory Menlo Park CA 94025 USA;SLAC National Accelerator Laboratory Joint Center for Energy Storage Research (JCESR) Lemont IL 60439 USA;Department of Chemical and Biological Engineering University of Colorado Boulder CO 80309 USA
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1670505
Alternate Identifier(s):
OSTI ID: 1670508; OSTI ID: 1706596
Report Number(s):
BNL-220566-2020-JAAM
Journal ID: ISSN 0044-8249
Grant/Contract Number:  
SC0012704; SN2020957; AC02‐76SF00515; AC02‐05CH11231; ECCS‐2026822
Resource Type:
Published Article
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 132 Journal Issue: 51; Journal ID: ISSN 0044-8249
Publisher:
German Chemical Society
Country of Publication:
Germany
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY

Citation Formats

Steinrück, Hans‐Georg, Cao, Chuntian, Lukatskaya, Maria R., Takacs, Christopher J., Wan, Gang, Mackanic, David G., Tsao, Yuchi, Zhao, Jingbo, Helms, Brett A., Xu, Kang, Borodin, Oleg, Wishart, James F., and Toney, Michael F. Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. Germany: N. p., 2020. Web. doi:10.1002/ange.202007745.
Steinrück, Hans‐Georg, Cao, Chuntian, Lukatskaya, Maria R., Takacs, Christopher J., Wan, Gang, Mackanic, David G., Tsao, Yuchi, Zhao, Jingbo, Helms, Brett A., Xu, Kang, Borodin, Oleg, Wishart, James F., & Toney, Michael F. Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. Germany. https://doi.org/10.1002/ange.202007745
Steinrück, Hans‐Georg, Cao, Chuntian, Lukatskaya, Maria R., Takacs, Christopher J., Wan, Gang, Mackanic, David G., Tsao, Yuchi, Zhao, Jingbo, Helms, Brett A., Xu, Kang, Borodin, Oleg, Wishart, James F., and Toney, Michael F. Thu . "Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces". Germany. https://doi.org/10.1002/ange.202007745.
@article{osti_1670505,
title = {Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces},
author = {Steinrück, Hans‐Georg and Cao, Chuntian and Lukatskaya, Maria R. and Takacs, Christopher J. and Wan, Gang and Mackanic, David G. and Tsao, Yuchi and Zhao, Jingbo and Helms, Brett A. and Xu, Kang and Borodin, Oleg and Wishart, James F. and Toney, Michael F.},
abstractNote = {Using synchrotron X-rays the LiTFSI/H2O electrolyte interfacial decomposition pathways in the „water-in-salt“ and „salt-in-water“ regimes are investigated. The resultant photoelectron-induced reduction was revealed to be concentration-dependent interfacial chemistry that only occurs among closely contact ion-pairs, which constitutes the rationale behind the „water-in-salt“ concept.},
doi = {10.1002/ange.202007745},
journal = {Angewandte Chemie},
number = 51,
volume = 132,
place = {Germany},
year = {Thu Sep 03 00:00:00 EDT 2020},
month = {Thu Sep 03 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/ange.202007745

Save / Share:

Works referenced in this record:

Relation between orbital binding energies and ionicities in alkali and alkaline earth flourides
journal, January 1980


Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability
journal, August 2017


New insight in the electrochemical behaviour of stainless steel electrode in water-in-salt electrolyte
journal, September 2018


Impact of Film Thickness and Temperature on Ultrafast Excess Charge Dynamics in Ionic Liquid Films
journal, October 2015

  • Shearer, Alex J.; Suich, David E.; Caplins, Benjamin W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b07262

Superconcentrated electrolytes for a high-voltage lithium-ion battery
journal, June 2016

  • Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12032

Hydrate-melt electrolytes for high-energy-density aqueous batteries
journal, August 2016


Improving Electrochemical Stability and Low‐Temperature Performance with Water/Acetonitrile Hybrid Electrolytes
journal, November 2019

  • Chen, Jiawei; Vatamanu, Jenel; Xing, Lidan
  • Advanced Energy Materials, Vol. 10, Issue 3
  • DOI: 10.1002/aenm.201902654

4.0 V Aqueous Li-Ion Batteries
journal, September 2017


Solid-liquid interfaces of ionic liquid solutions—Interfacial layering and bulk correlations
journal, April 2015

  • Mezger, Markus; Roth, Roland; Schröder, Heiko
  • The Journal of Chemical Physics, Vol. 142, Issue 16
  • DOI: 10.1063/1.4918742

Electron solvation dynamics and reactivity in ionic liquids observed by picosecond radiolysis techniques
journal, January 2012

  • Wishart, James F.; Funston, Alison M.; Szreder, Tomasz
  • Faraday Discuss., Vol. 154
  • DOI: 10.1039/C1FD00065A

Layering of [BMIM][sup +]-based ionic liquids at a charged sapphire interface
journal, January 2009

  • Mezger, Markus; Schramm, Sebastian; Schröder, Heiko
  • The Journal of Chemical Physics, Vol. 131, Issue 9
  • DOI: 10.1063/1.3212613

Reactions of solvated electrons with imidazolium cations in ionic liquids
journal, October 2008


Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries
journal, January 2018

  • Lukatskaya, Maria R.; Feldblyum, Jeremy I.; Mackanic, David G.
  • Energy & Environmental Science, Vol. 11, Issue 10
  • DOI: 10.1039/C8EE00833G

Electrochemical behavior of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte
journal, April 2017


How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes
journal, December 2017

  • Suo, Liumin; Oh, Dahyun; Lin, Yuxiao
  • Journal of the American Chemical Society, Vol. 139, Issue 51
  • DOI: 10.1021/jacs.7b10688

Thermalization of photoelectrons in polar medium
journal, March 1991

  • Rips, Ilya; Silbey, R. J.
  • The Journal of Chemical Physics, Vol. 94, Issue 6
  • DOI: 10.1063/1.460605

A 63 m Superconcentrated Aqueous Electrolyte for High-Energy Li-Ion Batteries
journal, February 2020


Competitive Salt Precipitation/Dissolution During Free‐Water Reduction in Water‐in‐Salt Electrolyte
journal, June 2020

  • Bouchal, Roza; Li, Zhujie; Bongu, Chandra
  • Angewandte Chemie International Edition
  • DOI: 10.1002/anie.202005378

Decomposition of Ionic Liquids at Lithium Interfaces. 1. Ab Initio Molecular Dynamics Simulations
journal, December 2017

  • Yildirim, Handan; Haskins, Justin B.; Bauschlicher, Charles W.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 51
  • DOI: 10.1021/acs.jpcc.7b09657

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Dynamics of Excess Electronic Charge in Aliphatic Ionic Liquids Containing the Bis(trifluoromethylsulfonyl)amide Anion
journal, November 2013

  • Xu, Changhui; Durumeric, Aleksander; Kashyap, Hemant K.
  • Journal of the American Chemical Society, Vol. 135, Issue 46
  • DOI: 10.1021/ja409338z

Theory of the Double Layer in Water-in-Salt Electrolytes
journal, September 2018

  • McEldrew, Michael; Goodwin, Zachary A. H.; Kornyshev, Alexei A.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 19
  • DOI: 10.1021/acs.jpclett.8b02543

Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries
journal, September 2018


Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes
journal, January 2017

  • Pesko, Danielle M.; Timachova, Ksenia; Bhattacharya, Rajashree
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0581711jes

Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes
journal, January 2019

  • Alvarado, Judith; Schroeder, Marshall A.; Pollard, Travis P.
  • Energy & Environmental Science, Vol. 12, Issue 2
  • DOI: 10.1039/C8EE02601G

Spectrum and Reactivity of the Solvated Electron in the Ionic Liquid Methyltributylammonium Bis(trifluoromethylsulfonyl)imide
journal, July 2003

  • Wishart, James F.; Neta, Pedatsur
  • The Journal of Physical Chemistry B, Vol. 107, Issue 30
  • DOI: 10.1021/jp027792z

Solid Electrolyte Interphase Revealing Interfacial Electrochemistry on Highly Oriented Pyrolytic Graphite in a Water-in-Salt Electrolyte
journal, August 2020

  • Kim, Yena; Hong, Misun; Oh, Hyunjeong
  • The Journal of Physical Chemistry C, Vol. 124, Issue 37
  • DOI: 10.1021/acs.jpcc.0c05433

Power and Technology Scaling into the 5 nm Node with Stacked Nanosheets
journal, January 2018


“Water-in-Salt” Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting
journal, July 2017

  • Suo, Liumin; Borodin, Oleg; Wang, Yuesheng
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201701189

Catalytic reduction of TFSI-containing ionic liquid in the presence of lithium cations
journal, April 2017


Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions
journal, September 2012

  • Schroder, Kjell W.; Celio, Hugo; Webb, Lauren J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp307372m

In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes
journal, December 2014

  • Kim, Hyea; Wu, Feixiang; Lee, Jung Tae
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401792

Photodetachment, electron cooling, and recombination, in a series of neat aliphatic room temperature ionic liquids
journal, August 2015

  • Molins i. Domenech, Francesc; Healy, Andrew T.; Blank, David A.
  • The Journal of Chemical Physics, Vol. 143, Issue 6
  • DOI: 10.1063/1.4927915

Uncharted Waters: Super-Concentrated Electrolytes
journal, January 2020


Formation of a Solid Electrolyte Interphase in Hydrate-Melt Electrolytes
journal, November 2019

  • Ko, Seongjae; Yamada, Yuki; Yamada, Atsuo
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 49
  • DOI: 10.1021/acsami.9b13662

X-ray-Induced Fragmentation of Imidazolium-Based Ionic Liquids Studied by Soft X-ray Absorption Spectroscopy
journal, February 2018

  • Wang, Huixin; Wu, Cheng Hao; Weatherup, Robert S.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 4
  • DOI: 10.1021/acs.jpclett.8b00057

Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes
journal, October 2017


Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by “Water-in-Bisalt” Electrolyte
journal, April 2016


The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “ Water-in-Salt ” electrolytes
journal, January 2018

  • Dubouis, Nicolas; Lemaire, Pierre; Mirvaux, Boris
  • Energy & Environmental Science, Vol. 11, Issue 12
  • DOI: 10.1039/C8EE02456A

Note: Experiments in hard x-ray chemistry: In situ production of molecular hydrogen and x-ray induced combustion
journal, March 2012

  • Pravica, Michael; Bai, Ligang; Park, Changyong
  • Review of Scientific Instruments, Vol. 83, Issue 3
  • DOI: 10.1063/1.3682336

Effects of functional group substitution on electron spectra and solvation dynamics in a family of ionic liquids
journal, February 2005


Gel electrolyte for a 4V flexible aqueous lithium-ion battery
journal, September 2020


Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes
journal, February 2020


Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by “Water-in-Bisalt” Electrolyte
journal, April 2016

  • Suo, Liumin; Borodin, Oleg; Sun, Wei
  • Angewandte Chemie International Edition, Vol. 55, Issue 25
  • DOI: 10.1002/anie.201602397

Dynamics of a Room Temperature Ionic Liquid in Supported Ionic Liquid Membranes vs the Bulk Liquid: 2D IR and Polarized IR Pump–Probe Experiments
journal, December 2016

  • Shin, Jae Yoon; Yamada, Steven A.; Fayer, Michael D.
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b10695

New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM
journal, November 2017


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Avogadro: an advanced semantic chemical editor, visualization, and analysis platform
journal, August 2012

  • Hanwell, Marcus D.; Curtis, Donald E.; Lonie, David C.
  • Journal of Cheminformatics, Vol. 4, Issue 1
  • DOI: 10.1186/1758-2946-4-17

Highly reversible zinc metal anode for aqueous batteries
journal, April 2018


Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


Infrared and Raman study of the PEO-LiTFSI polymer electrolyte
journal, April 1998


Electrochemical activity of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte
journal, December 2019


Competitive Salt Precipitation/Dissolution During Free‐Water Reduction in Water‐in‐Salt Electrolyte
journal, June 2020