DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rewiring yeast metabolism to synthesize products beyond ethanol

Abstract

Saccharomyces cerevisiae, Baker’s yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate pro- duction of a wide range of chemical products from glucose. However, in many cases, the demonstrations report titers and yields that fall below thresholds for industrial feasibility. Ethanol synthesis is a central part of S. cerevisiae metabolism, and redirecting flux to other products remains a barrier to indus- trialize strains for producing other molecules. Removing ethanol producing pathways leads to poor fitness, such as impaired growth on glucose. Here, we review metabolic engi- neering efforts aimed at restoring growth in non-ethanol pro- ducing strains with emphasis on relieving glucose repression associated with the Crabtree effect and rewiring metabolism to provide access to critical cellular building blocks. Substantial progress has been made in the past decade, but many op- portunities for improvement remain.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States); Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1670202
Alternate Identifier(s):
OSTI ID: 1670240; OSTI ID: 1764307
Grant/Contract Number:  
SC0018409; SC0018420
Resource Type:
Accepted Manuscript
Journal Name:
Current Opinion in Chemical Biology
Additional Journal Information:
Journal Volume: 59; Journal ID: ISSN 1367-5931
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Yeast; Saccharomyces cerevisiae; Crabtree–Warburg effect; Metabolic engineering; Pyruvate decarboxylase deficient; Glucose; Ethanol; Acetyl-CoA; Adaptive laboratory evolution

Citation Formats

Gambacorta, Francesca V., Dietrich, Joshua J., Yan, Qiang, and Pfleger, Brian F. Rewiring yeast metabolism to synthesize products beyond ethanol. United States: N. p., 2020. Web. doi:10.1016/j.cbpa.2020.08.005.
Gambacorta, Francesca V., Dietrich, Joshua J., Yan, Qiang, & Pfleger, Brian F. Rewiring yeast metabolism to synthesize products beyond ethanol. United States. https://doi.org/10.1016/j.cbpa.2020.08.005
Gambacorta, Francesca V., Dietrich, Joshua J., Yan, Qiang, and Pfleger, Brian F. Mon . "Rewiring yeast metabolism to synthesize products beyond ethanol". United States. https://doi.org/10.1016/j.cbpa.2020.08.005. https://www.osti.gov/servlets/purl/1670202.
@article{osti_1670202,
title = {Rewiring yeast metabolism to synthesize products beyond ethanol},
author = {Gambacorta, Francesca V. and Dietrich, Joshua J. and Yan, Qiang and Pfleger, Brian F.},
abstractNote = {Saccharomyces cerevisiae, Baker’s yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate pro- duction of a wide range of chemical products from glucose. However, in many cases, the demonstrations report titers and yields that fall below thresholds for industrial feasibility. Ethanol synthesis is a central part of S. cerevisiae metabolism, and redirecting flux to other products remains a barrier to indus- trialize strains for producing other molecules. Removing ethanol producing pathways leads to poor fitness, such as impaired growth on glucose. Here, we review metabolic engi- neering efforts aimed at restoring growth in non-ethanol pro- ducing strains with emphasis on relieving glucose repression associated with the Crabtree effect and rewiring metabolism to provide access to critical cellular building blocks. Substantial progress has been made in the past decade, but many op- portunities for improvement remain.},
doi = {10.1016/j.cbpa.2020.08.005},
journal = {Current Opinion in Chemical Biology},
number = ,
volume = 59,
place = {United States},
year = {Mon Oct 05 00:00:00 EDT 2020},
month = {Mon Oct 05 00:00:00 EDT 2020}
}

Works referenced in this record:

Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
journal, February 2007

  • Vemuri, G. N.; Eiteman, M. A.; McEwen, J. E.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 7
  • DOI: 10.1073/pnas.0607469104

Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion
journal, June 2015

  • Turner, Timothy L.; Zhang, Guo-Chang; Kim, Soo Rin
  • Applied Microbiology and Biotechnology, Vol. 99, Issue 19
  • DOI: 10.1007/s00253-015-6701-3

Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
journal, May 2011

  • Bastian, Sabine; Liu, Xiang; Meyerowitz, Joseph T.
  • Metabolic Engineering, Vol. 13, Issue 3, p. 345-352
  • DOI: 10.1016/j.ymben.2011.02.004

Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis
journal, September 2018


A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae
journal, November 2017


n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA
journal, February 2016


Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae
journal, November 2015

  • Baek, Seung-Ho; Kwon, Eunice Y.; Kim, Yong Hwan
  • Applied Microbiology and Biotechnology, Vol. 100, Issue 6
  • DOI: 10.1007/s00253-015-7174-0

Homofermentative Lactate Production Cannot Sustain Anaerobic Growth of Engineered Saccharomyces cerevisiae: Possible Consequence of Energy-Dependent Lactate Export
journal, May 2004


Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
journal, February 2013

  • Ida, Yoshihiro; Hirasawa, Takashi; Furusawa, Chikara
  • Applied Microbiology and Biotechnology, Vol. 97, Issue 11
  • DOI: 10.1007/s00253-013-4760-x

Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae
journal, September 2019


Improving isobutanol titers in Saccharomyces cerevisiae with over-expressing NADPH-specific glucose-6-phosphate dehydrogenase (Zwf1)
journal, November 2017


Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae
journal, November 1997


Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway
journal, July 2018


Improving the phenotype predictions of a yeast genome‐scale metabolic model by incorporating enzymatic constraints
journal, August 2017

  • Sánchez, Benjamín J.; Zhang, Cheng; Nilsson, Avlant
  • Molecular Systems Biology, Vol. 13, Issue 8
  • DOI: 10.15252/msb.20167411

Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway
journal, February 2019

  • Liu, Hu; Fan, Jingjing; Wang, Chen
  • Journal of Agricultural and Food Chemistry, Vol. 67, Issue 13
  • DOI: 10.1021/acs.jafc.9b00653

Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications
journal, November 2018


Directed Evolution of Pyruvate Decarboxylase-Negative Saccharomyces cerevisiae, Yielding a C2-Independent, Glucose-Tolerant, and Pyruvate-Hyperproducing Yeast
journal, January 2004

  • van Maris, A. J. A.; Geertman, J. -M. A.; Vermeulen, A.
  • Applied and Environmental Microbiology, Vol. 70, Issue 1
  • DOI: 10.1128/AEM.70.1.159-166.2004

Trehalose-6-phosphate promotes fermentation and glucose repression in Saccharomyces cerevisiae
journal, October 2018

  • Vicente, Rebeca L.; Spina, Lucie; Gómez, Jose P. L.
  • Microbial Cell, Vol. 5, Issue 10
  • DOI: 10.15698/mic2018.10.651

An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
journal, January 2012

  • Oud, Bart; Flores, Carmen-Lisset; Gancedo, Carlos
  • Microbial Cell Factories, Vol. 11, Issue 1
  • DOI: 10.1186/1475-2859-11-131

Controlling Central Carbon Metabolism for Improved Pathway Yields in Saccharomyces cerevisiae
journal, November 2015

  • Tan, Sue Zanne; Manchester, Shawn; Prather, Kristala L. J.
  • ACS Synthetic Biology, Vol. 5, Issue 2
  • DOI: 10.1021/acssynbio.5b00164

Revisiting the Crabtree/Warburg effect in a dynamic perspective: a fitness advantage against sugar-induced cell death
journal, March 2018


Activating transhydrogenase and NAD kinase in combination for improving isobutanol production
journal, March 2013


Saccharomyces cerevisiae Engineered for Xylose Metabolism Exhibits a Respiratory Response
journal, November 2004


Preventing Overflow Metabolism in Crabtree-Positive Microorganisms through On-Line Monitoring and Control of Fed-Batch Fermentations
journal, September 2018


GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae
journal, October 2016

  • Baek, Seung-Ho; Kwon, Eunice Y.; Kim, Seon-Young
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep34812

Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative
journal, August 2018


The role of glycolysis-derived hexose phosphates in the induction of the Crabtree effect
journal, August 2018

  • Rosas Lemus, Mónica; Roussarie, Elodie; Hammad, Noureddine
  • Journal of Biological Chemistry, Vol. 293, Issue 33
  • DOI: 10.1074/jbc.RA118.003672

Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches
journal, November 2019

  • Naghshbandi, Mohammad Pooya; Tabatabaei, Meisam; Aghbashlo, Mortaza
  • Renewable and Sustainable Energy Reviews, Vol. 115
  • DOI: 10.1016/j.rser.2019.109353

Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A
journal, July 2008

  • Jouhten, Paula; Rintala, Eija; Huuskonen, Anne
  • BMC Systems Biology, Vol. 2, Issue 1
  • DOI: 10.1186/1752-0509-2-60

Metabolic engineering of Saccharomyces cerevisiae  for production of carboxylic acids: current status and challenges
journal, December 2009


Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains
journal, December 2016


Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
journal, March 1996


Optogenetic regulation of engineered cellular metabolism for microbial chemical production
journal, March 2018

  • Zhao, Evan M.; Zhang, Yanfei; Mehl, Justin
  • Nature, Vol. 555, Issue 7698
  • DOI: 10.1038/nature26141

MoVE identifies metabolic valves to switch between phenotypic states
journal, December 2018


Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
journal, December 2014


Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
journal, October 2013


Investigation of the Best Saccharomyces cerevisiae Growth Condition
journal, January 2017

  • Salari, Roshanak; Salari, Rosita
  • Electronic physician, Vol. 9, Issue 1
  • DOI: 10.19082/3592

Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae
journal, February 2016

  • van Rossum, Harmen M.; Kozak, Barbara U.; Niemeijer, Matthijs S.
  • FEMS Yeast Research, Vol. 16, Issue 3
  • DOI: 10.1093/femsyr/fow017

Evaluation of pyruvate decarboxylase‐negative Saccharomyces cerevisiae strains for the production of succinic acid
journal, August 2019

  • Zahoor, Ahmed; Küttner, Felix T. F.; Blank, Lars M.
  • Engineering in Life Sciences, Vol. 19, Issue 10
  • DOI: 10.1002/elsc.201900080

An evolutionary perspective on the Crabtree effect
journal, October 2014


Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
journal, January 2013


Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering
journal, August 2012


Elimination of Glycerol Production in Anaerobic Cultures of a Saccharomyces cerevisiae Strain Engineered To Use Acetic Acid as an Electron Acceptor
journal, November 2009

  • Medina, Victor; Almering, Marinka; van Maris, Antonius
  • Applied and Environmental Microbiology, Vol. 76, Issue 1, p. 190-195
  • DOI: 10.1128/AEM.01772-09

Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae
journal, April 2015


Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield
journal, January 2018

  • Papapetridis, Ioannis; Goudriaan, Maaike; Vázquez Vitali, María
  • Biotechnology for Biofuels, Vol. 11, Issue 1
  • DOI: 10.1186/s13068-017-1001-z

Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae
journal, November 2019

  • Lane, Stephan; Zhang, Yanfei; Yun, Eun Ju
  • Biotechnology and Bioengineering, Vol. 117, Issue 2
  • DOI: 10.1002/bit.27202

Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction
journal, September 2013

  • Hirasawa, Takashi; Ida, Yoshihiro; Furuasawa, Chikara
  • Bioengineered, Vol. 5, Issue 2
  • DOI: 10.4161/bioe.26569

Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
journal, February 2012

  • Ida, Yoshihiro; Furusawa, Chikara; Hirasawa, Takashi
  • Journal of Bioscience and Bioengineering, Vol. 113, Issue 2
  • DOI: 10.1016/j.jbiosc.2011.09.019

The early steps of glucose signalling in yeast
journal, July 2008


Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
journal, September 2015


Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export
journal, March 2008

  • Zelle, R. M.; de Hulster, E.; van Winden, W. A.
  • Applied and Environmental Microbiology, Vol. 74, Issue 9
  • DOI: 10.1128/AEM.02591-07

Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
journal, March 2012


Flux controlling technology for central carbon metabolism for efficient microbial bio-production
journal, August 2020


Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions
journal, January 1998


Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research
journal, April 2016

  • McIlwain, Sean J.; Peris, David; Sardi, Maria
  • G3: Genes|Genomes|Genetics, Vol. 6, Issue 6
  • DOI: 10.1534/g3.116.029389

Production of biofuels and chemicals from xylose using native and engineered yeast strains
journal, March 2019


Current and future modalities of dynamic control in metabolic engineering
journal, August 2018


Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain
journal, August 2015

  • Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.
  • Microbial Cell Factories, Vol. 14, Issue 1
  • DOI: 10.1186/s12934-015-0305-6

The glucose signaling network in yeast
journal, November 2013

  • Kim, Jeong-Ho; Roy, Adhiraj; Jouandot, David
  • Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1830, Issue 11
  • DOI: 10.1016/j.bbagen.2013.07.025

Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities
journal, December 2016


Synthetic biology toolkits and applications in Saccharomyces cerevisiae
journal, November 2018


SNF1 controls the glycolytic flux and mitochondrial respiration
journal, July 2019

  • Martinez‐Ortiz, Cecilia; Carrillo‐Garmendia, Andres; Correa‐Romero, Blanca Flor
  • Yeast, Vol. 36, Issue 8
  • DOI: 10.1002/yea.3399

Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value
journal, March 2014


Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals
journal, November 2015


Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase
journal, March 2016

  • Nilsson, Avlant; Nielsen, Jens
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep22264