skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 18, 2021

Title: Low Mach number fluctuating hydrodynamics model for ionic liquids

Abstract

We present a new mesoscale model for ionic liquids based on a low Mach number fluctuating hydrodynamics formulation for multicomponent charged species. The low Mach number approach eliminates sound waves from the fully compressible equations leading to a computationally efficient incompressible formulation. The model uses a Gibbs free energy functional that includes enthalpy of mixing, interfacial energy, and electrostatic contributions. These lead to a new fourth-order term in the mass equations and a reversible stress in the momentum equations. We calibrate our model using parameters for [DMPI+][F6P-], an extensively-studied room temperature ionic liquid (RTIL), and numerically demonstrate the formation of mesoscopic structuring at equilibrium in two and three dimensions. In simulations with electrode boundaries the measured double layer capacitance decreases with voltage, in agreement with theoretical predictions and experimental measurements for RTILs. Finally, we present a shear electroosmosis example to demonstrate that the methodology can be used to model electrokinetic flows.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Los Angeles, CA (United States)
  3. San Jose State Univ., CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
OSTI Identifier:
1670129
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Fluids
Additional Journal Information:
Journal Volume: 5; Journal Issue: 9; Journal ID: ISSN 2469-990X
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Klymko, Katherine, Nonaka, Andrew, Bell, John B., Carney, Sean P., and Garcia, Alejandro L. Low Mach number fluctuating hydrodynamics model for ionic liquids. United States: N. p., 2020. Web. https://doi.org/10.1103/physrevfluids.5.093701.
Klymko, Katherine, Nonaka, Andrew, Bell, John B., Carney, Sean P., & Garcia, Alejandro L. Low Mach number fluctuating hydrodynamics model for ionic liquids. United States. https://doi.org/10.1103/physrevfluids.5.093701
Klymko, Katherine, Nonaka, Andrew, Bell, John B., Carney, Sean P., and Garcia, Alejandro L. Fri . "Low Mach number fluctuating hydrodynamics model for ionic liquids". United States. https://doi.org/10.1103/physrevfluids.5.093701.
@article{osti_1670129,
title = {Low Mach number fluctuating hydrodynamics model for ionic liquids},
author = {Klymko, Katherine and Nonaka, Andrew and Bell, John B. and Carney, Sean P. and Garcia, Alejandro L.},
abstractNote = {We present a new mesoscale model for ionic liquids based on a low Mach number fluctuating hydrodynamics formulation for multicomponent charged species. The low Mach number approach eliminates sound waves from the fully compressible equations leading to a computationally efficient incompressible formulation. The model uses a Gibbs free energy functional that includes enthalpy of mixing, interfacial energy, and electrostatic contributions. These lead to a new fourth-order term in the mass equations and a reversible stress in the momentum equations. We calibrate our model using parameters for [DMPI+][F6P-], an extensively-studied room temperature ionic liquid (RTIL), and numerically demonstrate the formation of mesoscopic structuring at equilibrium in two and three dimensions. In simulations with electrode boundaries the measured double layer capacitance decreases with voltage, in agreement with theoretical predictions and experimental measurements for RTILs. Finally, we present a shear electroosmosis example to demonstrate that the methodology can be used to model electrokinetic flows.},
doi = {10.1103/physrevfluids.5.093701},
journal = {Physical Review Fluids},
number = 9,
volume = 5,
place = {United States},
year = {2020},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 18, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Intermolecular correlations in an ionic liquid under shear
journal, December 2008


Atomistic Simulation of the Thermodynamic and Transport Properties of Ionic Liquids
journal, November 2007

  • Maginn, Edward J.
  • Accounts of Chemical Research, Vol. 40, Issue 11
  • DOI: 10.1021/ar700163c

Fluctuating hydrodynamics of electrolytes at electroneutral scales
journal, April 2019


How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties
journal, October 2006

  • Tokuda, Hiroyuki; Tsuzuki, Seiji; Susan, Md. Abu Bin Hasan
  • The Journal of Physical Chemistry B, Vol. 110, Issue 39
  • DOI: 10.1021/jp064159v

Fluctuating hydrodynamics for multiscale simulation of inhomogeneous fluids: Mapping all-atom molecular dynamics to capillary waves
journal, July 2011

  • Shang, Barry Z.; Voulgarakis, Nikolaos K.; Chu, Jhih-Wei
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3615719

Revisiting the Rayleigh–Plateau instability for the nanoscale
journal, January 2019

  • Zhao, Chengxi; Sprittles, James E.; Lockerby, Duncan A.
  • Journal of Fluid Mechanics, Vol. 861
  • DOI: 10.1017/jfm.2018.950

Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
journal, March 2015

  • Donev, Aleksandar; Nonaka, Andy; Bhattacharjee, Amit Kumar
  • Physics of Fluids, Vol. 27, Issue 3
  • DOI: 10.1063/1.4913571

Small angle neutron scattering from 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids ([Cnmim][PF6], n=4, 6, and 8)
journal, August 2010

  • Hardacre, Christopher; Holbrey, John D.; Mullan, Claire L.
  • The Journal of Chemical Physics, Vol. 133, Issue 7
  • DOI: 10.1063/1.3473825

Learning the Physics of Pattern Formation from Images
journal, February 2020


Mean-Field Theory of Electrical Double Layer In Ionic Liquids with Account of Short-Range Correlations
journal, January 2017


Equilibrium morphology of block copolymer melts
journal, October 1986


Equilibrium morphology of block copolymer melts. 2
journal, October 1988

  • Kawasaki, Kyoji; Ohta, Takao; Kohrogui, Mitsuharu
  • Macromolecules, Vol. 21, Issue 10
  • DOI: 10.1021/ma00188a014

Equilibrium measurement method of slip length based on fluctuating hydrodynamics
journal, March 2020


Three-Dimensional Double Layers
journal, June 2014

  • Kornyshev, Alexei A.; Qiao, Rui
  • The Journal of Physical Chemistry C, Vol. 118, Issue 32
  • DOI: 10.1021/jp5047062

Direct determination of ionic transference numbers in ionic liquids by electrophoretic NMR
journal, January 2015

  • Gouverneur, Martin; Kopp, Jakob; van Wüllen, Leo
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 45
  • DOI: 10.1039/C5CP05753A

Dynamics of liquid nanothreads: Fluctuation-driven instability and rupture
journal, April 2020


Low Mach number fluctuating hydrodynamics of diffusively mixing fluids
journal, January 2014

  • Donev, Aleksandar; Nonaka, Andy; Sun, Yifei
  • Communications in Applied Mathematics and Computational Science, Vol. 9, Issue 1
  • DOI: 10.2140/camcos.2014.9.47

Ionic liquids in supercapacitors
journal, July 2013


Application of Density Functional Theory and Vibrational Spectroscopy Toward the Rational Design of Ionic Liquids
journal, January 2007

  • Katsyuba, Sergey A.; Zvereva, Elena E.; Vidiš, Ana
  • The Journal of Physical Chemistry A, Vol. 111, Issue 2
  • DOI: 10.1021/jp064610i

On the accuracy of finite-volume schemes for fluctuating hydrodynamics
journal, January 2010

  • Donev, Aleksandar; Vanden-Eijnden, Eric; Garcia, Alejandro
  • Communications in Applied Mathematics and Computational Science, Vol. 5, Issue 2
  • DOI: 10.2140/camcos.2010.5.149

A Hybrid Particle-Continuum Method for Hydrodynamics of Complex Fluids
journal, January 2010

  • Donev, Aleksandar; Bell, John B.; Garcia, Alejandro L.
  • Multiscale Modeling & Simulation, Vol. 8, Issue 3
  • DOI: 10.1137/090774501

Staggered Schemes for Fluctuating Hydrodynamics
journal, January 2012

  • Balboa, Florencio; Bell, John B.; Delgado-Buscalioni, Rafael
  • Multiscale Modeling & Simulation, Vol. 10, Issue 4
  • DOI: 10.1137/120864520

The Electric Double Layer Has a Life of Its Own
journal, June 2014

  • Merlet, Céline; Limmer, David T.; Salanne, Mathieu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 32
  • DOI: 10.1021/jp503224w

Fluctuating hydrodynamics for ionic liquids
journal, April 2017


On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors
journal, January 2014

  • Péan, Clarisse; Merlet, Céline; Rotenberg, Benjamin
  • ACS Nano, Vol. 8, Issue 2
  • DOI: 10.1021/nn4058243

Structure and Nanostructure in Ionic Liquids
journal, June 2015

  • Hayes, Robert; Warr, Gregory G.; Atkin, Rob
  • Chemical Reviews, Vol. 115, Issue 13
  • DOI: 10.1021/cr500411q

Low Mach number fluctuating hydrodynamics of binary liquid mixtures
journal, January 2015

  • Nonaka, Andrew; Sun, Yifei; Bell, John
  • Communications in Applied Mathematics and Computational Science, Vol. 10, Issue 2
  • DOI: 10.2140/camcos.2015.10.163

The fluctuation-dissipation theorem
journal, January 1966


Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces
journal, December 2015


Density functional theory for differential capacitance of planar electric double layers in ionic liquids
journal, March 2011


Efficient Variable-Coefficient Finite-Volume Stokes Solvers
journal, November 2014

  • Cai, Mingchao; Nonaka, Andy; Bell, John B.
  • Communications in Computational Physics, Vol. 16, Issue 5
  • DOI: 10.4208/cicp.070114.170614a

Direct Measurement of the Differential Capacitance of Solvent-Free and Dilute Ionic Liquids
journal, December 2017


Low Mach number fluctuating hydrodynamics for electrolytes
journal, November 2016


How ideal are binary mixtures of room-temperature ionic liquids?
journal, April 2010


Hamiltonian Fluid Mechanics
journal, January 1988


Electrochemistry in Room Temperature Ionic Liquids: A Review and Some Possible Applications
journal, October 2006

  • Silvester, Debbie S.; Compton, Richard G.
  • Zeitschrift für Physikalische Chemie, Vol. 220, Issue 10, p. 1247-1274
  • DOI: 10.1524/zpch.2006.220.10.1247

Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo
journal, September 1999

  • Garcia, Alejandro L.; Bell, John B.; Crutchfield, William Y.
  • Journal of Computational Physics, Vol. 154, Issue 1
  • DOI: 10.1006/jcph.1999.6305

Particle-Continuum Coupling and its Scaling Regimes: Theory and Applications
journal, March 2020

  • Delle Site, Luigi; Praprotnik, Matej; Bell, John B.
  • Advanced Theory and Simulations, Vol. 3, Issue 5
  • DOI: 10.1002/adts.201900232

Quasi–incompressible Cahn–Hilliard fluids and topological transitions
journal, October 1998

  • Lowengrub, J.; Truskinovsky, L.
  • Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 454, Issue 1978
  • DOI: 10.1098/rspa.1998.0273

Electrostatic correlations: from plasma to biology
journal, September 2002


Unraveling low nucleation temperatures in pool boiling through fluctuating hydrodynamics simulations
journal, September 2020


Charge transport and glassy dynamics in polymeric ionic liquids as reflected by their inter- and intramolecular interactions
journal, January 2019

  • Frenzel, Falk; Borchert, Pia; Anton, Arthur Markus
  • Soft Matter, Vol. 15, Issue 7
  • DOI: 10.1039/C8SM02135J

Molecular Dynamics Study of the Ionic Liquid 1- n -Butyl-3-methylimidazolium Hexafluorophosphate
journal, December 2002

  • Morrow, Timothy I.; Maginn, Edward J.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 49
  • DOI: 10.1021/jp0267003

Charge Transport and Glassy Dynamics in Ionic Liquids
journal, November 2011

  • Sangoro, Joshua R.; Kremer, Friedrich
  • Accounts of Chemical Research, Vol. 45, Issue 4
  • DOI: 10.1021/ar2001809

Energy applications of ionic liquids
journal, January 2009

  • Wishart, James F.
  • Energy & Environmental Science, Vol. 2, Issue 9
  • DOI: 10.1039/b906273d

Nanoscale Segregation in Room Temperature Ionic Liquids
journal, May 2007

  • Triolo, Alessandro; Russina, Olga; Bleif, Hans-Jurgen
  • The Journal of Physical Chemistry B, Vol. 111, Issue 18
  • DOI: 10.1021/jp067705t

Anomalous Capacitance Maximum of the Glassy Carbon–Ionic Liquid Interface through Dilution with Organic Solvents
journal, June 2015

  • Bozym, David J.; Uralcan, Betül; Limmer, David T.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 13
  • DOI: 10.1021/acs.jpclett.5b00899

Potential-Dependent Adlayer Structure and Dynamics at the Ionic Liquid/Au(111) Interface: A Molecular-Scale In Situ Video-STM Study
journal, April 2015

  • Wen, Rui; Rahn, Björn; Magnussen, Olaf M.
  • Angewandte Chemie International Edition, Vol. 54, Issue 20
  • DOI: 10.1002/anie.201501715

The heterogeneous multiscale method
journal, April 2012


Full-ionic liquid gel electrolytes: Enhanced photovoltaic performances in dye-sensitized solar cells
journal, October 2014


Ionic liquid lubricants: designed chemistry for engineering applications
journal, January 2009

  • Zhou, Feng; Liang, Yongmin; Liu, Weimin
  • Chemical Society Reviews, Vol. 38, Issue 9
  • DOI: 10.1039/b817899m

The Derivation and Numerical Solution of the Equations for Zero Mach Number Combustion
journal, January 1985


Thermodynamics, Structure, and Dynamics in Room Temperature Ionic Liquids:  The Case of 1-Butyl-3-methyl Imidazolium Hexafluorophosphate ([bmim][PF 6 ])
journal, October 2006

  • Triolo, Alessandro; Mandanici, Andrea; Russina, Olga
  • The Journal of Physical Chemistry B, Vol. 110, Issue 42
  • DOI: 10.1021/jp062895t

Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies
journal, December 2009


Compressible and incompressible fluids
journal, September 1982

  • Klainerman, Sergiu; Majda, Andrew
  • Communications on Pure and Applied Mathematics, Vol. 35, Issue 5
  • DOI: 10.1002/cpa.3160350503

Double Layer of Au(100)/Ionic Liquid Interface and Its Stability in Imidazolium-Based Ionic Liquids
journal, June 2009

  • Su, Yu-Zhuan; Fu, Yong-Chun; Yan, Jia-Wei
  • Angewandte Chemie International Edition, Vol. 48, Issue 28
  • DOI: 10.1002/anie.200900300

A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids
journal, August 2004

  • Liu, Zhiping; Huang, Shiping; Wang, Wenchuan
  • The Journal of Physical Chemistry B, Vol. 108, Issue 34
  • DOI: 10.1021/jp048369o

Structure and Dynamics of an Ionic Liquid Confined Inside a Charged Slit Graphitic Nanopore
journal, June 2012

  • Rajput, Nav Nidhi; Monk, Joshua; Hung, Francisco R.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 27
  • DOI: 10.1021/jp3041617

Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review
journal, August 2004

  • Buzzeo, Marisa C.; Evans, Russell G.; Compton, Richard G.
  • ChemPhysChem, Vol. 5, Issue 8
  • DOI: 10.1002/cphc.200301017

Double Layer in Ionic Liquids: Overscreening versus Crowding
journal, January 2011


A Review of Ionic Liquid Lubricants
journal, January 2013


Nanostructures of ionic liquids do not break up under shear: A molecular dynamics study
journal, April 2014


Double-Layer in Ionic Liquids:  Paradigm Change?
journal, May 2007

  • Kornyshev, Alexei A.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 20
  • DOI: 10.1021/jp067857o

Theory of Phase Separation and Polarization for Pure Ionic Liquids
journal, March 2016


2D phase transition of PF6 adlayers at the electrified ionic liquid/Au(111) interface
journal, August 2006