skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resonant nanodiffraction x-ray imaging reveals role of magnetic domains in complex oxide spin caloritronics

Abstract

Spin electronic devices based on crystalline oxide layers with nanoscale thicknesses involve complex structural and magnetic phenomena, including magnetic domains and the coupling of the magnetism to elastic and plastic crystallographic distortion. The magnetism of buried nanoscale layers has a substantial impact on spincaloritronic devices incorporating garnets and other oxides exhibiting the spin Seebeck effect (SSE). Synchrotron hard x-ray nanobeam diffraction techniques combine structural, elemental, and magnetic sensitivity and allow the magnetic domain configuration and structural distortion to be probed in buried layers simultaneously. Resonant scattering at the Gd L 2 edge of Gd 3 Fe 5 O 12 layers yields magnetic contrast with both linear and circular incident x-ray polarization. Domain patterns facet to form low-energy domain wall orientations but also are coupled to elastic features linked to epitaxial growth. Nanobeam magnetic diffraction images reveal diverse magnetic microstructure within emerging SSE materials and a strong coupling of the magnetism to crystallographic distortion.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [9];  [10]
  1. University of Wisconsin-Madison, Madison, WI 53706, USA.
  2. Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany.
  3. Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany., Physik-Department, Technische Universität München, 85748 Garching, Germany.
  4. Université Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France.
  5. XMaS, ESRF, The European Synchrotron, 38043 Grenoble, France., University of Liverpool, Department of Physics, Liverpool L69 3BX, UK.
  6. ESRF, The European Synchrotron, 38043 Grenoble, France.
  7. ESRF, The European Synchrotron, 38043 Grenoble, France., Aix Marseille Université, CNRS, IM2NP UMR 7334, Université de Toulon, Marseille 13397, France.
  8. Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany., Physik-Department, Technische Universität München, 85748 Garching, Germany., Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 7, 80799 München, Germany.
  9. MAX IV Laboratory, Fotongatan 2, 224 84 Lund, Sweden.
  10. Université Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France., European Spallation Source, SE-221 00 Lund, Sweden., Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark.
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1669729
Grant/Contract Number:  
FG02-04ER46147
Resource Type:
Published Article
Journal Name:
Science Advances
Additional Journal Information:
Journal Name: Science Advances Journal Volume: 6 Journal Issue: 40; Journal ID: ISSN 2375-2548
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English

Citation Formats

Evans, Paul G., Marks, Samuel D., Geprägs, Stephan, Dietlein, Maxim, Joly, Yves, Dai, Minyi, Hu, Jiamian, Bouchenoire, Laurence, Thompson, Paul B. J., Schülli, Tobias U., Richard, Marie-Ingrid, Gross, Rudolf, Carbone, Dina, and Mannix, Danny. Resonant nanodiffraction x-ray imaging reveals role of magnetic domains in complex oxide spin caloritronics. United States: N. p., 2020. Web. doi:10.1126/sciadv.aba9351.
Evans, Paul G., Marks, Samuel D., Geprägs, Stephan, Dietlein, Maxim, Joly, Yves, Dai, Minyi, Hu, Jiamian, Bouchenoire, Laurence, Thompson, Paul B. J., Schülli, Tobias U., Richard, Marie-Ingrid, Gross, Rudolf, Carbone, Dina, & Mannix, Danny. Resonant nanodiffraction x-ray imaging reveals role of magnetic domains in complex oxide spin caloritronics. United States. doi:10.1126/sciadv.aba9351.
Evans, Paul G., Marks, Samuel D., Geprägs, Stephan, Dietlein, Maxim, Joly, Yves, Dai, Minyi, Hu, Jiamian, Bouchenoire, Laurence, Thompson, Paul B. J., Schülli, Tobias U., Richard, Marie-Ingrid, Gross, Rudolf, Carbone, Dina, and Mannix, Danny. Fri . "Resonant nanodiffraction x-ray imaging reveals role of magnetic domains in complex oxide spin caloritronics". United States. doi:10.1126/sciadv.aba9351.
@article{osti_1669729,
title = {Resonant nanodiffraction x-ray imaging reveals role of magnetic domains in complex oxide spin caloritronics},
author = {Evans, Paul G. and Marks, Samuel D. and Geprägs, Stephan and Dietlein, Maxim and Joly, Yves and Dai, Minyi and Hu, Jiamian and Bouchenoire, Laurence and Thompson, Paul B. J. and Schülli, Tobias U. and Richard, Marie-Ingrid and Gross, Rudolf and Carbone, Dina and Mannix, Danny},
abstractNote = {Spin electronic devices based on crystalline oxide layers with nanoscale thicknesses involve complex structural and magnetic phenomena, including magnetic domains and the coupling of the magnetism to elastic and plastic crystallographic distortion. The magnetism of buried nanoscale layers has a substantial impact on spincaloritronic devices incorporating garnets and other oxides exhibiting the spin Seebeck effect (SSE). Synchrotron hard x-ray nanobeam diffraction techniques combine structural, elemental, and magnetic sensitivity and allow the magnetic domain configuration and structural distortion to be probed in buried layers simultaneously. Resonant scattering at the Gd L 2 edge of Gd 3 Fe 5 O 12 layers yields magnetic contrast with both linear and circular incident x-ray polarization. Domain patterns facet to form low-energy domain wall orientations but also are coupled to elastic features linked to epitaxial growth. Nanobeam magnetic diffraction images reveal diverse magnetic microstructure within emerging SSE materials and a strong coupling of the magnetism to crystallographic distortion.},
doi = {10.1126/sciadv.aba9351},
journal = {Science Advances},
number = 40,
volume = 6,
place = {United States},
year = {2020},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1126/sciadv.aba9351

Save / Share:

Works referenced in this record:

Circular magnetic x-ray dichroism in crystalline and amorphous GdFe 2
journal, March 1994


Resonant and non-resonant magnetic scatterings with circularly polarized X-rays: magnetic scattering factor and electron density of gadolinium iron garnet
journal, April 2017

  • Sasaki, Yo; Okube, Maki; Sasaki, Satoshi
  • Acta Crystallographica Section A Foundations and Advances, Vol. 73, Issue 3
  • DOI: 10.1107/S2053273317003588

Charge-magnetic interference resonant scattering studies of ferromagnetic crystals and thin films
journal, June 2012


Self-consistent aspects of x-ray absorption calculations
journal, August 2009


Anisotropy of Gadolinium Iron Garnet
journal, April 1963

  • Calhoun, B. A.; Freiser, M. J.
  • Journal of Applied Physics, Vol. 34, Issue 4
  • DOI: 10.1063/1.1729407

Spin‐Wave Spectrum of Gadolinium iron Garnet
journal, October 1966

  • Comstock, R. L.; Raymond, J. J.; Nilsen, W. G.
  • Applied Physics Letters, Vol. 9, Issue 7
  • DOI: 10.1063/1.1754747

Theory of magnon-driven spin Seebeck effect
journal, June 2010


Unexpected structural and magnetic depth dependence of YIG thin films
journal, September 2017


Magneto-optical study of holmium iron garnet Ho 3 Fe 5 O 12
journal, September 2012

  • Kalashnikova, A. M.; Pavlov, V. V.; Kimel, A. V.
  • Low Temperature Physics, Vol. 38, Issue 9
  • DOI: 10.1063/1.4752105

Nanoscale Distortions of Si Quantum Wells in Si/SiGe Quantum-Electronic Heterostructures
journal, July 2012

  • Evans, P. G.; Savage, D. E.; Prance, J. R.
  • Advanced Materials, Vol. 24, Issue 38
  • DOI: 10.1002/adma.201201833

Polarization control of an X-ray free-electron laser with a diamond phase retarder
journal, April 2014

  • Suzuki, Motohiro; Inubushi, Yuichi; Yabashi, Makina
  • Journal of Synchrotron Radiation, Vol. 21, Issue 3
  • DOI: 10.1107/S1600577514004780

Current heating induced spin Seebeck effect
journal, December 2013

  • Schreier, Michael; Roschewsky, Niklas; Dobler, Erich
  • Applied Physics Letters, Vol. 103, Issue 24
  • DOI: 10.1063/1.4839395

Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature
journal, January 2009


Growth and characterization of (100) garnets for imaging
journal, May 2004

  • Hansen, R. W.; Helseth, L. E.; Solovyev, A.
  • Journal of Magnetism and Magnetic Materials, Vol. 272-276
  • DOI: 10.1016/j.jmmm.2003.12.1304

Spintronics: A Spin-Based Electronics Vision for the Future
journal, November 2001

  • Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.
  • Science, Vol. 294, Issue 5546, p. 1488-1495
  • DOI: 10.1126/science.1065389

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Stress-Induced Perpendicular Magnetization in Epitaxial Iron Garnet Thin Films
journal, September 2012

  • Kubota, Masashi; Tsukazaki, Atsushi; Kagawa, Fumitaka
  • Applied Physics Express, Vol. 5, Issue 10
  • DOI: 10.1143/APEX.5.103002

Longitudinal spin-Seebeck effect in sintered polycrystalline (Mn,Zn)Fe2O4
journal, December 2010

  • Uchida, Ken-ichi; Nonaka, Tatsumi; Ota, Takeru
  • Applied Physics Letters, Vol. 97, Issue 26
  • DOI: 10.1063/1.3533397

Origin of the spin Seebeck effect in compensated ferrimagnets
journal, February 2016

  • Geprägs, Stephan; Kehlberger, Andreas; Coletta, Francesco Della
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10452

Scale-invariant magnetic textures in the strongly correlated oxide NdNiO3
journal, October 2019


Three-dimensional magnetization structures revealed with X-ray vector nanotomography
journal, July 2017

  • Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio
  • Nature, Vol. 547, Issue 7663
  • DOI: 10.1038/nature23006

Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures
journal, December 2009


Static and Dynamic Magnetic Properties of Single-Crystalline Yttrium Iron Garnet Films Epitaxially Grown on Three Garnet Substrates
journal, May 2018

  • Yoshimoto, Takuya; Goto, Taichi; Shimada, Kei
  • Advanced Electronic Materials, Vol. 4, Issue 7
  • DOI: 10.1002/aelm.201800106

Temperature Dependence of XRay Magnetic Circular Dichroism in Rare Earth Iron Garnets Rare Earth Gd, Dy and Sm
journal, January 2005


Spin caloritronics
journal, April 2012

  • Bauer, Gerrit E. W.; Saitoh, Eiji; van Wees, Bart J.
  • Nature Materials, Vol. 11, Issue 5
  • DOI: 10.1038/nmat3301

Seeing is believing: visualization of antiferromagnetic domains
journal, January 2020


Bragg transmission phase plates for the production of circularly polarized x rays
journal, February 1995

  • Lang, J. C.; Srajer, George
  • Review of Scientific Instruments, Vol. 66, Issue 2
  • DOI: 10.1063/1.1145902

Magnetostriction of Dilute Dysprosium Iron and of Gadolinium Iron Garnets
journal, February 1968

  • Clark, A. E.; Rhyne, J. J.; Callen, E. R.
  • Journal of Applied Physics, Vol. 39, Issue 2
  • DOI: 10.1063/1.2163526

Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal
journal, January 2018


Magnetism and spin transport in rare-earth-rich epitaxial terbium and europium iron garnet films
journal, September 2018


Magnetic properties and domain structure of ultrathin yttrium iron garnet/Pt bilayers
journal, March 2019


X-ray Microdiffraction Images of Antiferromagnetic Domain Evolution in Chromium
journal, February 2002


Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets
journal, April 2019


Strain-controlled nonvolatile magnetization switching
journal, November 2014


Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
journal, May 2006

  • Saitoh, E.; Ueda, M.; Miyajima, H.
  • Applied Physics Letters, Vol. 88, Issue 18
  • DOI: 10.1063/1.2199473

Temperature-switched anomaly in the spin Seebeck effect in Gd 3 Fe 5 O 12
journal, January 2019


Epitaxial growth of Y 3 Fe 5 O 12 thin films with perpendicular magnetic anisotropy
journal, May 2017

  • Fu, Jianbo; Hua, Muxin; Wen, Xin
  • Applied Physics Letters, Vol. 110, Issue 20
  • DOI: 10.1063/1.4983783

Three-dimensional high-resolution quantitative microscopy of extended crystals
journal, September 2011

  • Godard, P.; Carbone, G.; Allain, M.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1569

Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Orientational states of magnetization in epitaxial (111)-oriented iron garnet films
journal, June 1999


A study of the domain structure of ferrites in the vicinity of the compensation point by Mössbauer spectroscopy
journal, February 2016


Microwave oscillations of a nanomagnet driven by a spin-polarized current
journal, September 2003

  • Kiselev, S. I.; Sankey, J. C.; Krivorotov, I. N.
  • Nature, Vol. 425, Issue 6956
  • DOI: 10.1038/nature01967

Observation of the spin Seebeck effect
journal, October 2008


Magnon Mode Selective Spin Transport in Compensated Ferrimagnets
journal, May 2017


Morphology and Local Structure in Labyrinthine Stripe Domain Phase
journal, December 1991


Magnetic anisotropy of Eu 0.65 Y 2.35 Fe 3.8 Ga 1.2 O 12 films grown on garnet substrates with different lattice parameters
journal, June 1973

  • Giess, E. A.; Cronemeyer, D. C.
  • Applied Physics Letters, Vol. 22, Issue 11
  • DOI: 10.1063/1.1654523