skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enabling Natural Graphite in High‐Voltage Aqueous Graphite || Zn Metal Dual‐Ion Batteries

Abstract

Safety and cost are the key metrics for large-scale energy storage. Due to the use of nonaqueous electrolytes and transition metal oxides in current lithium-ion battery technologies, safety, cost, and environmental issues are a significant cause for concern. Graphite is a promising cathode material for dual-ion batteries due to its high operating potential, low cost, and high safety. Nevertheless, it is challenging to find a suitable aqueous electrolyte due to the narrow electrochemical stability window (1.23 V). This work presents a graphite || zinc metal aqueous dual-ion battery of approximate to 2.3-2.5 V, a remarkably high voltage in aqueous zinc batteries, achieving >80% capacity retention after 200 cycles and delivering approximate to 110 mAh g(-1)at a charge/discharge current of 200 mA g(-1). A capacity of nearly 60 mAh g(-1)is achieved at a charge/discharge current of 5000 mA g(-1). Natural graphite is enabled as a reversible cathode using a highly concentrated lithium-free bisalt aqueous electrolyte.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [5];  [7];  [4];  [1];  [6];  [1];  [1];  [1];  [3];  [3]
  1. Energy & Environment Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
  2. State Key Laboratory of Metastable Materials Science and Technology School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
  3. MEET Battery Research Center Institute of Physical Chemistry University of Münster Corrensstrasse 46 48149 Münster Germany
  4. Advanced Photon Source X‐Ray Science Division Argonne National Laboratory Lemont IL 60439 USA;Joint Center for Energy Storage Research Lemont IL 60439 USA
  5. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
  6. Joint Center for Energy Storage Research Lemont IL 60439 USA;Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
  7. Environmental and Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE Laboratory Directed Research and Development (LDRD) Program; Ministry of Economic Affairs, Innovation, Digitalization and Energy of the State of North Rhine‐Westphalia (MWIDE)
OSTI Identifier:
1668122
Alternate Identifier(s):
OSTI ID: 1728607; OSTI ID: 1756626; OSTI ID: 1786090
Report Number(s):
PNNL-SA-150985
Journal ID: ISSN 1614-6832
Grant/Contract Number:  
AC05-76RL01830; AC02‐76SF00515; AC02‐06CH11357; 313‐W044A
Resource Type:
Published Article
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 10 Journal Issue: 41; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; anion intercalation; aqueous batteries; dual-ion batteries; water-in-bisalt electrolytes; zinc anodes

Citation Formats

Rodríguez‐Pérez, Ismael A., Zhang, Lu, Wrogemann, Jens Matthies, Driscoll, Darren M., Sushko, Maria L., Han, Kee Sung, Fulton, John L., Engelhard, Mark H., Balasubramanian, Mahalingam, Viswanathan, Vilayanur V., Murugesan, Vijayakumar, Li, Xiaolin, Reed, David, Sprenkle, Vincent, Winter, Martin, and Placke, Tobias. Enabling Natural Graphite in High‐Voltage Aqueous Graphite || Zn Metal Dual‐Ion Batteries. Germany: N. p., 2020. Web. https://doi.org/10.1002/aenm.202001256.
Rodríguez‐Pérez, Ismael A., Zhang, Lu, Wrogemann, Jens Matthies, Driscoll, Darren M., Sushko, Maria L., Han, Kee Sung, Fulton, John L., Engelhard, Mark H., Balasubramanian, Mahalingam, Viswanathan, Vilayanur V., Murugesan, Vijayakumar, Li, Xiaolin, Reed, David, Sprenkle, Vincent, Winter, Martin, & Placke, Tobias. Enabling Natural Graphite in High‐Voltage Aqueous Graphite || Zn Metal Dual‐Ion Batteries. Germany. https://doi.org/10.1002/aenm.202001256
Rodríguez‐Pérez, Ismael A., Zhang, Lu, Wrogemann, Jens Matthies, Driscoll, Darren M., Sushko, Maria L., Han, Kee Sung, Fulton, John L., Engelhard, Mark H., Balasubramanian, Mahalingam, Viswanathan, Vilayanur V., Murugesan, Vijayakumar, Li, Xiaolin, Reed, David, Sprenkle, Vincent, Winter, Martin, and Placke, Tobias. Mon . "Enabling Natural Graphite in High‐Voltage Aqueous Graphite || Zn Metal Dual‐Ion Batteries". Germany. https://doi.org/10.1002/aenm.202001256.
@article{osti_1668122,
title = {Enabling Natural Graphite in High‐Voltage Aqueous Graphite || Zn Metal Dual‐Ion Batteries},
author = {Rodríguez‐Pérez, Ismael A. and Zhang, Lu and Wrogemann, Jens Matthies and Driscoll, Darren M. and Sushko, Maria L. and Han, Kee Sung and Fulton, John L. and Engelhard, Mark H. and Balasubramanian, Mahalingam and Viswanathan, Vilayanur V. and Murugesan, Vijayakumar and Li, Xiaolin and Reed, David and Sprenkle, Vincent and Winter, Martin and Placke, Tobias},
abstractNote = {Safety and cost are the key metrics for large-scale energy storage. Due to the use of nonaqueous electrolytes and transition metal oxides in current lithium-ion battery technologies, safety, cost, and environmental issues are a significant cause for concern. Graphite is a promising cathode material for dual-ion batteries due to its high operating potential, low cost, and high safety. Nevertheless, it is challenging to find a suitable aqueous electrolyte due to the narrow electrochemical stability window (1.23 V). This work presents a graphite || zinc metal aqueous dual-ion battery of approximate to 2.3-2.5 V, a remarkably high voltage in aqueous zinc batteries, achieving >80% capacity retention after 200 cycles and delivering approximate to 110 mAh g(-1)at a charge/discharge current of 200 mA g(-1). A capacity of nearly 60 mAh g(-1)is achieved at a charge/discharge current of 5000 mA g(-1). Natural graphite is enabled as a reversible cathode using a highly concentrated lithium-free bisalt aqueous electrolyte.},
doi = {10.1002/aenm.202001256},
journal = {Advanced Energy Materials},
number = 41,
volume = 10,
place = {Germany},
year = {2020},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.202001256

Save / Share:

Works referenced in this record:

An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries
journal, May 2017

  • Pramudita, James C.; Sehrawat, Divya; Goonetilleke, Damian
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201602911

Dual-graphite chemistry enabled by a high voltage electrolyte
journal, January 2014

  • Read, Jeffrey A.; Cresce, Arthur V.; Ervin, Matthew H.
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE43333A

Performance and cost of materials for lithium-based rechargeable automotive batteries
journal, April 2018


Reverse Dual-Ion Battery via a ZnCl 2 Water-in-Salt Electrolyte
journal, March 2019

  • Wu, Xianyong; Xu, Yunkai; Zhang, Chong
  • Journal of the American Chemical Society, Vol. 141, Issue 15
  • DOI: 10.1021/jacs.9b00617

A review of rechargeable batteries for portable electronic devices
journal, March 2019

  • Liang, Yeru; Zhao, Chen‐Zi; Yuan, Hong
  • InfoMat, Vol. 1, Issue 1
  • DOI: 10.1002/inf2.12000

Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite
journal, May 2019


Electrochemical Intercalation of Hexafluorophosphate Anion into Various Carbons for Cathode of Dual-Carbon Rechargeable Battery
journal, January 2007

  • Ishihara, Tatsumi; Koga, Muneki; Matsumoto, Hiroshige
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 3
  • DOI: 10.1149/1.2424263

4.0 V Aqueous Li-Ion Batteries
journal, September 2017


Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries
journal, December 2018


ZnCl 2 “Water‐in‐Salt” Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode
journal, May 2019

  • Zhang, Lu; Rodríguez‐Pérez, Ismael A.; Jiang, Heng
  • Advanced Functional Materials, Vol. 29, Issue 30
  • DOI: 10.1002/adfm.201902653

Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte
journal, January 2014

  • Rothermel, Sergej; Meister, Paul; Schmuelling, Guido
  • Energy Environ. Sci., Vol. 7, Issue 10
  • DOI: 10.1039/C4EE01873G

A Hydrocarbon Cathode for Dual-Ion Batteries
journal, September 2016


The Electrochemistry of Black Carbons
journal, December 1983

  • Besenhard, J�rgen O.; Fritz, Heinz P.
  • Angewandte Chemie International Edition in English, Vol. 22, Issue 12
  • DOI: 10.1002/anie.198309501

Aqueous anion insertion into a hydrocarbon cathode via a water-in-salt electrolyte
journal, December 2019


Sodium and sodium-ion energy storage batteries
journal, August 2012

  • Ellis, Brian L.; Nazar, Linda F.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 4, p. 168-177
  • DOI: 10.1016/j.cossms.2012.04.002

X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells
journal, October 2013


Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes
journal, June 2012

  • Placke, Tobias; Bieker, Peter; Lux, Simon Franz
  • Zeitschrift für Physikalische Chemie, Vol. 226, Issue 5-6
  • DOI: 10.1524/zpch.2012.0222

A Review on the Features and Progress of Dual-Ion Batteries
journal, March 2018


Strategies towards Low‐Cost Dual‐Ion Batteries with High Performance
journal, November 2019

  • Zhou, Xiaolong; Liu, Qirong; Jiang, Chunlei
  • Angewandte Chemie International Edition, Vol. 59, Issue 10
  • DOI: 10.1002/anie.201814294

Development of Safe and Sustainable Dual‐Ion Batteries Through Hybrid Aqueous/Nonaqueous Electrolytes
journal, January 2020

  • Wrogemann, Jens Matthies; Künne, Sven; Heckmann, Andreas
  • Advanced Energy Materials, Vol. 10, Issue 8
  • DOI: 10.1002/aenm.201902709

An Organic Cathode Based Dual-Ion Aqueous Zinc Battery Enabled by a Cellulose Membrane
journal, January 2019

  • Glatz, Hadrien; Lizundia, Erlantz; Pacifico, Fiona
  • ACS Applied Energy Materials, Vol. 2, Issue 2
  • DOI: 10.1021/acsaem.8b01851

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Anion Hosting Cathodes in Dual-Ion Batteries
journal, July 2017


Commercialization of Lithium Battery Technologies for Electric Vehicles
journal, June 2019

  • Zeng, Xiaoqiao; Li, Matthew; Abd El‐Hady, Deia
  • Advanced Energy Materials, Vol. 9, Issue 27
  • DOI: 10.1002/aenm.201900161

Toward Higher Capacities of Hydrocarbon Cathodes in Dual-Ion Batteries
journal, November 2018

  • Rodríguez-Pérez, Ismael A.; Bommier, Clement; Fuller, Duncan D.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 50
  • DOI: 10.1021/acsami.8b17105

Study of the Electrochemical Behavior of Dual-Graphite Cells Using Ionic Liquid-Based Electrolytes
journal, February 2014


Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells
journal, April 2013


Reversible Anion Storage in a Metal-Organic Framework for Dual-Ion Battery Systems
journal, January 2019

  • Dühnen, Simon; Nölle, Roman; Wrogemann, Jens
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0681903jes

A ZnCl 2 water-in-salt electrolyte for a reversible Zn metal anode
journal, January 2018

  • Zhang, Chong; Holoubek, John; Wu, Xianyong
  • Chemical Communications, Vol. 54, Issue 100
  • DOI: 10.1039/C8CC07730D

Rechargeable Dual‐Ion Batteries with Graphite as a Cathode: Key Challenges and Opportunities
journal, August 2019

  • Kravchyk, Kostiantyn V.; Kovalenko, Maksym V.
  • Advanced Energy Materials, Vol. 9, Issue 35
  • DOI: 10.1002/aenm.201901749

Dual Intercalating Molten Electrolyte Batteries
journal, January 1994

  • Carlin, Richard T.
  • Journal of The Electrochemical Society, Vol. 141, Issue 7
  • DOI: 10.1149/1.2055041

An Aqueous Dual‐Ion Battery Cathode of Mn 3 O 4 via Reversible Insertion of Nitrate
journal, April 2019

  • Jiang, Heng; Wei, Zhixuan; Ma, Lu
  • Angewandte Chemie International Edition, Vol. 58, Issue 16
  • DOI: 10.1002/anie.201814646

Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes
journal, October 2017


The first graphite intercalation compounds containing tris(pentafluoroethyl)trifluorophosphate
journal, September 2010


Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents
journal, February 1999


Electrochemical intercalation of bis(fluorosulfonyl)amide anions into graphite from aqueous solutions
journal, March 2019


Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells
journal, January 2012

  • Placke, Tobias; Fromm, Olga; Lux, Simon Franz
  • Journal of The Electrochemical Society, Vol. 159, Issue 11
  • DOI: 10.1149/2.011211jes

Influence of Graphite Characteristics on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into a Graphite-Based Cathode
journal, January 2013

  • Placke, Tobias; Rothermel, Sergej; Fromm, Olga
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.027311jes

A Dual−Ion Battery Cathode via Oxidative Insertion of Anions in a Metal–Organic Framework
journal, October 2015

  • Aubrey, Michael L.; Long, Jeffrey R.
  • Journal of the American Chemical Society, Vol. 137, Issue 42
  • DOI: 10.1021/jacs.5b08022

Unravelling charge/discharge and capacity fading mechanisms in dual-graphite battery cells using an electron inventory model
journal, September 2019


Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives
journal, May 2010


Electrolytes for Dual‐Carbon Batteries
journal, March 2019


Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals
journal, October 2017


Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte
journal, October 2018

  • Lim, Joonhyung; Park, Kwanghee; Lee, Hochan
  • Journal of the American Chemical Society, Vol. 140, Issue 46
  • DOI: 10.1021/jacs.8b07696

Highly reversible zinc metal anode for aqueous batteries
journal, April 2018


From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises
journal, November 2017

  • Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang
  • Angewandte Chemie International Edition, Vol. 57, Issue 1
  • DOI: 10.1002/anie.201703772

Li + Ion Insertion in TiO 2 (Anatase). 2. Voltammetry on Nanoporous Films
journal, September 1997

  • Lindström, Henrik; Södergren, Sven; Solbrand, Anita
  • The Journal of Physical Chemistry B, Vol. 101, Issue 39
  • DOI: 10.1021/jp970490q

Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries
journal, January 2019


Dual-Carbon Battery Using High Concentration LiPF 6 in Dimethyl Carbonate (DMC) Electrolyte
journal, January 2016

  • Miyoshi, Seiji; Nagano, Hiroki; Fukuda, Taro
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0381607jes