DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes

Abstract

This work focuses on the mechanisms of interfacial processes at the surface of amorphous silicon thin-film electrodes in organic carbonate electrolytes to unveil the origins of the inherent nonpassivating behavior of silicon anodes in Li-ion batteries. Attenuated total reflection Fourier-transform infrared spectroscopy, X-ray absorption spectroscopy, and infrared near-field scanning optical microscopy were used to investigate the formation, evolution, and chemical composition of the surface layer formed on Si upon cycling. We found that the chemical composition and thickness of the solid/electrolyte interphase (SEI) layer continuously change during the charging/discharging cycles. This SEI layer "breathing" effect is directly related to the formation of lithium ethylene dicarbonate (LiEDC) and LiPF6 salt decomposition products during silicon lithiation and their subsequent disappearance upon delithiation. The detected appearance and disappearance of LiEDC and LiPF6 decomposition compounds in the SEI layer are directly linked with the observed interfacial instability and poor passivating behavior of the silicon anode.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [4];  [2];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Warwick, Coventry (United Kingdom)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1665998
Alternate Identifier(s):
OSTI ID: 1775411
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 12; Journal Issue: 36; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium-ion battery; silicon anode; solid electrolyte interphase (SEI); interfacial reactivity; passivation; thin film; lithium ethylene

Citation Formats

Hasa, Ivana, Haregewoin, Atetegeb M., Zhang, Liang, Tsai, Wan-Yu, Guo, Jinghua, Veith, Gabriel M., Ross, Philip N., and Kostecki, Robert. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes. United States: N. p., 2020. Web. doi:10.1021/acsami.0c09384.
Hasa, Ivana, Haregewoin, Atetegeb M., Zhang, Liang, Tsai, Wan-Yu, Guo, Jinghua, Veith, Gabriel M., Ross, Philip N., & Kostecki, Robert. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes. United States. https://doi.org/10.1021/acsami.0c09384
Hasa, Ivana, Haregewoin, Atetegeb M., Zhang, Liang, Tsai, Wan-Yu, Guo, Jinghua, Veith, Gabriel M., Ross, Philip N., and Kostecki, Robert. Tue . "Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes". United States. https://doi.org/10.1021/acsami.0c09384. https://www.osti.gov/servlets/purl/1665998.
@article{osti_1665998,
title = {Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes},
author = {Hasa, Ivana and Haregewoin, Atetegeb M. and Zhang, Liang and Tsai, Wan-Yu and Guo, Jinghua and Veith, Gabriel M. and Ross, Philip N. and Kostecki, Robert},
abstractNote = {This work focuses on the mechanisms of interfacial processes at the surface of amorphous silicon thin-film electrodes in organic carbonate electrolytes to unveil the origins of the inherent nonpassivating behavior of silicon anodes in Li-ion batteries. Attenuated total reflection Fourier-transform infrared spectroscopy, X-ray absorption spectroscopy, and infrared near-field scanning optical microscopy were used to investigate the formation, evolution, and chemical composition of the surface layer formed on Si upon cycling. We found that the chemical composition and thickness of the solid/electrolyte interphase (SEI) layer continuously change during the charging/discharging cycles. This SEI layer "breathing" effect is directly related to the formation of lithium ethylene dicarbonate (LiEDC) and LiPF6 salt decomposition products during silicon lithiation and their subsequent disappearance upon delithiation. The detected appearance and disappearance of LiEDC and LiPF6 decomposition compounds in the SEI layer are directly linked with the observed interfacial instability and poor passivating behavior of the silicon anode.},
doi = {10.1021/acsami.0c09384},
journal = {ACS Applied Materials and Interfaces},
number = 36,
volume = 12,
place = {United States},
year = {Tue Aug 11 00:00:00 EDT 2020},
month = {Tue Aug 11 00:00:00 EDT 2020}
}

Works referenced in this record:

Lithium batteries: Status, prospects and future
journal, May 2010


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
journal, March 2018


Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Alloy Design for Lithium-Ion Battery Anodes
journal, January 2007

  • Obrovac, M. N.; Christensen, Leif; Le, Dinh Ba
  • Journal of The Electrochemical Society, Vol. 154, Issue 9, p. A849-A855
  • DOI: 10.1149/1.2752985

Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density
journal, November 2017


Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries
journal, September 2017


Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
journal, June 2015

  • Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8393

Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
journal, November 2013

  • Wang, Chao; Wu, Hui; Chen, Zheng
  • Nature Chemistry, Vol. 5, Issue 12
  • DOI: 10.1038/nchem.1802

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

Sodium Carboxymethyl Cellulose
journal, January 2007

  • Li, Jing; Lewis, R. B.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 2
  • DOI: 10.1149/1.2398725

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

In-Situ Spectro-electrochemical Insight Revealing Distinctive Silicon Anode Solid Electrolyte Interphase Formation in a Lithium-ion Battery
journal, March 2016

  • Yang , Junfeng; Solomatin, Nickolay; Kraytsberg, Alexander
  • ChemistrySelect, Vol. 1, Issue 3
  • DOI: 10.1002/slct.201600119

Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions
journal, September 2012

  • Schroder, Kjell W.; Celio, Hugo; Webb, Lauren J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp307372m

Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive
journal, July 2017


Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

The Chemistry of Electrolyte Reduction on Silicon Electrodes Revealed by in Situ ATR-FTIR Spectroscopy
journal, June 2017

  • Shi, Feifei; Ross, Philip N.; Somorjai, Gabor A.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 27
  • DOI: 10.1021/acs.jpcc.7b04132

Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery
journal, September 2017


Silicon as anode material for Li-ion batteries
journal, November 2016


Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode
journal, August 2015

  • Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. Kevin
  • The Journal of Physical Chemistry C, Vol. 119, Issue 35
  • DOI: 10.1021/acs.jpcc.5b06817

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries
journal, February 2020

  • Steinrück, Hans-Georg; Cao, Chuntian; Veith, Gabriel M.
  • The Journal of Chemical Physics, Vol. 152, Issue 8
  • DOI: 10.1063/1.5142643

Catalysis and Interfacial Chemistry in Lithium Batteries: A Surface Science Approach
journal, June 2014


A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy
journal, February 2015

  • Shi, Feifei; Ross, Philip N.; Zhao, Hui
  • Journal of the American Chemical Society, Vol. 137, Issue 9
  • DOI: 10.1021/ja5128456

Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes
journal, January 2011

  • Li, Juchuan; Dozier, Alan K.; Li, Yunchao
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3574027

Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries
journal, November 2014

  • Schroder, Kjell W.; Dylla, Anthony G.; Harris, Stephen J.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 23
  • DOI: 10.1021/am506517j

Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation
journal, February 2012

  • Abel, Paul R.; Lin, Yong-Mao; Celio, Hugo
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn204896n

Elucidating the Surface Reactions of an Amorphous Si Thin Film as a Model Electrode for Li-Ion Batteries
journal, October 2016

  • Ferraresi, Giulio; Czornomaz, Lukas; Villevieille, Claire
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 43
  • DOI: 10.1021/acsami.6b10929

Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2 M LiPF 6 /EC:EMC Electrolyte
journal, September 2005

  • Zhuang, Guorong V.; Xu, Kang; Yang, Hui
  • The Journal of Physical Chemistry B, Vol. 109, Issue 37
  • DOI: 10.1021/jp052474w

Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries
journal, March 2006

  • Xu, Kang; Zhuang, Guorong V.; Allen, Jan L.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 15
  • DOI: 10.1021/jp0601522

Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries
journal, January 2014

  • Nie, Mengyun; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.054406jes

Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Decomposition Reactions of Anode Solid Electrolyte Interphase (SEI) Components with LiPF 6
journal, October 2017

  • Parimalam, Bharathy S.; MacIntosh, Alex D.; Kadam, Rahul
  • The Journal of Physical Chemistry C, Vol. 121, Issue 41
  • DOI: 10.1021/acs.jpcc.7b08433

The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions
journal, January 1994

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054718

A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy
journal, January 2005

  • Zhuang, Guorong V.; Yang, Hui; Blizanac, Berislav
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 9
  • DOI: 10.1149/1.1979327

Electrochemically controlled transport of lithium through ultrathin SiO2
journal, July 2005

  • Ariel, Nava; Ceder, Gerbrand; Sadoway, Donald R.
  • Journal of Applied Physics, Vol. 98, Issue 2
  • DOI: 10.1063/1.1989431

The lithiation process and Li diffusion in amorphous SiO 2 and Si from first-principles
journal, January 2020


Computational Study on the Solubility of Lithium Salts Formed on Lithium Ion Battery Negative Electrode in Organic Solvents
journal, April 2010

  • Tasaki, Ken; Harris, Stephen J.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 17
  • DOI: 10.1021/jp100013h

Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents
journal, January 2009

  • Tasaki, Ken; Goldberg, Alex; Lian, Jian-Jie
  • Journal of The Electrochemical Society, Vol. 156, Issue 12
  • DOI: 10.1149/1.3239850

Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate
journal, October 2017

  • Jin, Yanting; Kneusels, Nis-Julian H.; Magusin, Pieter C. M. M.
  • Journal of the American Chemical Society, Vol. 139, Issue 42
  • DOI: 10.1021/jacs.7b06834

Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy
journal, August 2019


Near-field microscopy by elastic light scattering from a tip
journal, April 2004

  • Keilmann, Fritz; Hillenbrand, Rainer
  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 362, Issue 1817
  • DOI: 10.1098/rsta.2003.1347

IR Near-Field Study of the Solid Electrolyte Interphase on a Tin Electrode
journal, March 2015

  • Ayache, Maurice; Lux, Simon Franz; Kostecki, Robert
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 7
  • DOI: 10.1021/acs.jpclett.5b00263

Near-Field IR Nanoscale Imaging of the Solid Electrolyte Interphase on a HOPG Electrode
journal, January 2015

  • Ayache, Maurice; Jang, Dongyoun; Syzdek, Jaroslaw
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0101513jes

Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization
journal, January 2009


Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O
journal, January 2005


Ion chromatographic determination of hydrolysis products of hexafluorophosphate salts in aqueous solution
journal, February 2012


Quantification of PF 5 and POF 3 from Side Reactions of LiPF 6 in Li-Ion Batteries
journal, January 2018

  • Solchenbach, Sophie; Metzger, Michael; Egawa, Masamitsu
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0481813jes

Role of the LiPF 6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study
journal, January 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303399v

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes
journal, January 2012


Solubility and dissolution rate of silica in acid fluoride solutions
journal, December 2009


Inhomogeneous refractive index of SiOXFY thin films prepared by ion beam assisted deposition
journal, June 2000


Thermal Atomic Layer Etching of SiO 2 by a “Conversion-Etch” Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride
journal, March 2017

  • DuMont, Jaime W.; Marquardt, Amy E.; Cano, Austin M.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 11
  • DOI: 10.1021/acsami.7b01259

The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries
journal, January 2009

  • El Ouatani, L.; Dedryvère, R.; Siret, C.
  • Journal of The Electrochemical Society, Vol. 156, Issue 2
  • DOI: 10.1149/1.3029674

Improved Interfacial Properties of MCMB Electrode by 1-(Trimethylsilyl)imidazole as New Electrolyte Additive To Suppress LiPF 6 Decomposition
journal, January 2017

  • Wotango, Aselefech Sorsa; Su, Wei-Nien; Leggesse, Ermias Girma
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 3
  • DOI: 10.1021/acsami.6b13105

Decomposition reaction of LiPF6-based electrolytes for lithium ion cells
journal, June 2006


Distinct Solid-Electrolyte-Interphases on Sn (100) and (001) Electrodes Studied by Soft X-Ray Spectroscopy
journal, February 2014

  • Qiao, Ruimin; Lucas, Ivan T.; Karim, Altaf
  • Advanced Materials Interfaces, Vol. 1, Issue 3
  • DOI: 10.1002/admi.201300115

Enhancement of the Li Conductivity in LiF by Introducing Glass/Crystal Interfaces
journal, January 2012

  • Li, Chilin; Gu, Lin; Maier, Joachim
  • Advanced Functional Materials, Vol. 22, Issue 6
  • DOI: 10.1002/adfm.201101798

Breathing and oscillating growth of solid-electrolyte-interphase upon electrochemical cycling
journal, January 2018

  • Zhuo, Zengqing; Lu, Peng; Delacourt, Charles
  • Chemical Communications, Vol. 54, Issue 7
  • DOI: 10.1039/c7cc07082a

The dissolution and growth of sparingly soluble inorganic salts: A kinetics and surface energy approach
journal, October 1998