skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century

Abstract

Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar tomore » present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.« less

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo more »; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ORCiD logo; ; ORCiD logo « less
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Biological and Environmental Research (BER) (SC-23); USDOE National Nuclear Security Administration (NNSA); Netherlands Earth System Science Centre; Academy of Finland; Australian Research Council; Agence Nationale de la Recherche; European Commission (EC); Japan Society for the Promotion of Science (JSPS); New Zealand Ministry of Business Innovation and Employment; German Federal Ministry of Education and Research (BMBF); National Science Foundation (NSF); National Aeronautics and Space Administration (NASA); German Research Foundation (DFG); Norwegian Research Council
OSTI Identifier:
1664437
Alternate Identifier(s):
OSTI ID: 1699490
Report Number(s):
LA-UR-20-20383
Journal ID: ISSN 1994-0424
Grant/Contract Number:  
89233218CNA000001; 024.002.001; 286587; 322430; SR140300001; ANR-15-CE01-0005-01; 820575; JP16H02224; JP17H06104; JP17H06323; RTVU1705; 1739031; 1603799; 1644277; 1852977; 1916566; NNX17AG65G; NNX17AI03G; WI4556/2-1; WI4556/3-1; 280727; 295075
Resource Type:
Published Article
Journal Name:
The Cryosphere (Online)
Additional Journal Information:
Journal Name: The Cryosphere (Online) Journal Volume: 14 Journal Issue: 9; Journal ID: ISSN 1994-0424
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Astronomy and Astrophysics

Citation Formats

Seroussi, Hélène, Nowicki, Sophie, Payne, Antony J., Goelzer, Heiko, Lipscomb, William H., Abe-Ouchi, Ayako, Agosta, Cécile, Albrecht, Torsten, Asay-Davis, Xylar, Barthel, Alice, Calov, Reinhard, Cullather, Richard, Dumas, Christophe, Galton-Fenzi, Benjamin K., Gladstone, Rupert, Golledge, Nicholas R., Gregory, Jonathan M., Greve, Ralf, Hattermann, Tore, Hoffman, Matthew J., Humbert, Angelika, Huybrechts, Philippe, Jourdain, Nicolas C., Kleiner, Thomas, Larour, Eric, Leguy, Gunter R., Lowry, Daniel P., Little, Chistopher M., Morlighem, Mathieu, Pattyn, Frank, Pelle, Tyler, Price, Stephen F., Quiquet, Aurélien, Reese, Ronja, Schlegel, Nicole-Jeanne, Shepherd, Andrew, Simon, Erika, Smith, Robin S., Straneo, Fiammetta, Sun, Sainan, Trusel, Luke D., Van Breedam, Jonas, van de Wal, Roderik S. W., Winkelmann, Ricarda, Zhao, Chen, Zhang, Tong, and Zwinger, Thomas. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Germany: N. p., 2020. Web. https://doi.org/10.5194/tc-14-3033-2020.
Seroussi, Hélène, Nowicki, Sophie, Payne, Antony J., Goelzer, Heiko, Lipscomb, William H., Abe-Ouchi, Ayako, Agosta, Cécile, Albrecht, Torsten, Asay-Davis, Xylar, Barthel, Alice, Calov, Reinhard, Cullather, Richard, Dumas, Christophe, Galton-Fenzi, Benjamin K., Gladstone, Rupert, Golledge, Nicholas R., Gregory, Jonathan M., Greve, Ralf, Hattermann, Tore, Hoffman, Matthew J., Humbert, Angelika, Huybrechts, Philippe, Jourdain, Nicolas C., Kleiner, Thomas, Larour, Eric, Leguy, Gunter R., Lowry, Daniel P., Little, Chistopher M., Morlighem, Mathieu, Pattyn, Frank, Pelle, Tyler, Price, Stephen F., Quiquet, Aurélien, Reese, Ronja, Schlegel, Nicole-Jeanne, Shepherd, Andrew, Simon, Erika, Smith, Robin S., Straneo, Fiammetta, Sun, Sainan, Trusel, Luke D., Van Breedam, Jonas, van de Wal, Roderik S. W., Winkelmann, Ricarda, Zhao, Chen, Zhang, Tong, & Zwinger, Thomas. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Germany. https://doi.org/10.5194/tc-14-3033-2020
Seroussi, Hélène, Nowicki, Sophie, Payne, Antony J., Goelzer, Heiko, Lipscomb, William H., Abe-Ouchi, Ayako, Agosta, Cécile, Albrecht, Torsten, Asay-Davis, Xylar, Barthel, Alice, Calov, Reinhard, Cullather, Richard, Dumas, Christophe, Galton-Fenzi, Benjamin K., Gladstone, Rupert, Golledge, Nicholas R., Gregory, Jonathan M., Greve, Ralf, Hattermann, Tore, Hoffman, Matthew J., Humbert, Angelika, Huybrechts, Philippe, Jourdain, Nicolas C., Kleiner, Thomas, Larour, Eric, Leguy, Gunter R., Lowry, Daniel P., Little, Chistopher M., Morlighem, Mathieu, Pattyn, Frank, Pelle, Tyler, Price, Stephen F., Quiquet, Aurélien, Reese, Ronja, Schlegel, Nicole-Jeanne, Shepherd, Andrew, Simon, Erika, Smith, Robin S., Straneo, Fiammetta, Sun, Sainan, Trusel, Luke D., Van Breedam, Jonas, van de Wal, Roderik S. W., Winkelmann, Ricarda, Zhao, Chen, Zhang, Tong, and Zwinger, Thomas. Thu . "ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century". Germany. https://doi.org/10.5194/tc-14-3033-2020.
@article{osti_1664437,
title = {ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century},
author = {Seroussi, Hélène and Nowicki, Sophie and Payne, Antony J. and Goelzer, Heiko and Lipscomb, William H. and Abe-Ouchi, Ayako and Agosta, Cécile and Albrecht, Torsten and Asay-Davis, Xylar and Barthel, Alice and Calov, Reinhard and Cullather, Richard and Dumas, Christophe and Galton-Fenzi, Benjamin K. and Gladstone, Rupert and Golledge, Nicholas R. and Gregory, Jonathan M. and Greve, Ralf and Hattermann, Tore and Hoffman, Matthew J. and Humbert, Angelika and Huybrechts, Philippe and Jourdain, Nicolas C. and Kleiner, Thomas and Larour, Eric and Leguy, Gunter R. and Lowry, Daniel P. and Little, Chistopher M. and Morlighem, Mathieu and Pattyn, Frank and Pelle, Tyler and Price, Stephen F. and Quiquet, Aurélien and Reese, Ronja and Schlegel, Nicole-Jeanne and Shepherd, Andrew and Simon, Erika and Smith, Robin S. and Straneo, Fiammetta and Sun, Sainan and Trusel, Luke D. and Van Breedam, Jonas and van de Wal, Roderik S. W. and Winkelmann, Ricarda and Zhao, Chen and Zhang, Tong and Zwinger, Thomas},
abstractNote = {Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.},
doi = {10.5194/tc-14-3033-2020},
journal = {The Cryosphere (Online)},
number = 9,
volume = 14,
place = {Germany},
year = {2020},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/tc-14-3033-2020

Save / Share:

Works referenced in this record:

Bedmap2: improved ice bed, surface and thickness datasets for Antarctica
journal, January 2013

  • Fretwell, P.; Pritchard, H. D.; Vaughan, D. G.
  • The Cryosphere, Vol. 7, Issue 1
  • DOI: 10.5194/tc-7-375-2013

EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates: THE EN4 DATA SET
journal, December 2013

  • Good, Simon A.; Martin, Matthew J.; Rayner, Nick A.
  • Journal of Geophysical Research: Oceans, Vol. 118, Issue 12
  • DOI: 10.1002/2013JC009067

Large-scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica
journal, April 1989

  • MacAyeal, Douglas R.
  • Journal of Geophysical Research: Solid Earth, Vol. 94, Issue B4
  • DOI: 10.1029/JB094iB04p04071

Parameterization for subgrid-scale motion of ice-shelf calving fronts
journal, January 2011


CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica
journal, January 2020

  • Barthel, Alice; Agosta, Cécile; Little, Christopher M.
  • The Cryosphere, Vol. 14, Issue 3
  • DOI: 10.5194/tc-14-855-2020

Assessment of the Greenland ice sheet–atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model
journal, January 2019

  • Le clec'h, Sébastien; Charbit, Sylvie; Quiquet, Aurélien
  • The Cryosphere, Vol. 13, Issue 1
  • DOI: 10.5194/tc-13-373-2019

Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks
journal, April 2019


Four decades of Antarctic Ice Sheet mass balance from 1979–2017
journal, January 2019

  • Rignot, Eric; Mouginot, Jérémie; Scheuchl, Bernd
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 4
  • DOI: 10.1073/pnas.1812883116

Fracture field for large-scale ice dynamics
journal, January 2012

  • Albrecht, Torsten; Levermann, Anders
  • Journal of Glaciology, Vol. 58, Issue 207
  • DOI: 10.3189/2012JoG11J191

Coupled ice shelf‐ocean modeling and complex grounding line retreat from a seabed ridge
journal, May 2016

  • De Rydt, J.; Gudmundsson, G. H.
  • Journal of Geophysical Research: Earth Surface, Vol. 121, Issue 5
  • DOI: 10.1002/2015JF003791

Comparison of hybrid schemes for the combination of shallow approximations in numerical simulations of the Antarctic Ice Sheet
journal, January 2017


The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6
journal, January 2020


Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model
journal, January 2014

  • Leguy, G. R.; Asay-Davis, X. S.; Lipscomb, W. H.
  • The Cryosphere, Vol. 8, Issue 4
  • DOI: 10.5194/tc-8-1239-2014

Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica
journal, January 2013


Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3)
journal, January 2019

  • Favier, Lionel; Jourdain, Nicolas C.; Jenkins, Adrian
  • Geoscientific Model Development, Vol. 12, Issue 6
  • DOI: 10.5194/gmd-12-2255-2019

A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling: HIGHER-ORDER GLACIER MODELS
journal, March 2004

  • Hindmarsh, R. C. A.
  • Journal of Geophysical Research: Earth Surface, Vol. 109, Issue F1
  • DOI: 10.1029/2003JF000065

Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model
journal, January 2012


Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates
journal, January 2012


The link between climate warming and break-up of ice shelves in the Antarctic Peninsula
journal, January 2000


The effect of cavitation on glacier sliding
journal, March 2005

  • Schoof, Christian
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 461, Issue 2055
  • DOI: 10.1098/rspa.2004.1350

Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models
journal, January 2020

  • Nowicki, Sophie; Goelzer, Heiko; Seroussi, Hélène
  • The Cryosphere, Vol. 14, Issue 7
  • DOI: 10.5194/tc-14-2331-2020

Contrasting the modelled sensitivity of the Amundsen Sea Embayment ice streams
journal, May 2016

  • Nias, Isabel J.; Cornford, Stephen L.; Payne, Antony J.
  • Journal of Glaciology, Vol. 62, Issue 233
  • DOI: 10.1017/jog.2016.40

Dynamics of Glaciers and Large Ice Masses
journal, January 1982


Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region
journal, December 2001

  • Ritz, Catherine; Rommelaere, Vincent; Dumas, Christophe
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D23
  • DOI: 10.1029/2001JD900232

A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections
journal, January 2020

  • Jourdain, Nicolas C.; Asay-Davis, Xylar; Hattermann, Tore
  • The Cryosphere, Vol. 14, Issue 9
  • DOI: 10.5194/tc-14-3111-2020

Contribution of Antarctica to past and future sea-level rise
journal, March 2016


Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups
journal, April 2009

  • Scambos, Ted; Fricker, Helen Amanda; Liu, Cheng-Chien
  • Earth and Planetary Science Letters, Vol. 280, Issue 1-4
  • DOI: 10.1016/j.epsl.2008.12.027

Ice-Shelf Melting Around Antarctica
journal, June 2013


Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes
journal, July 2015


A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications
journal, January 2014

  • de Boer, B.; Stocchi, P.; van de Wal, R. S. W.
  • Geoscientific Model Development, Vol. 7, Issue 5
  • DOI: 10.5194/gmd-7-2141-2014

Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework
journal, January 2018

  • Schlegel, Nicole-Jeanne; Seroussi, Helene; Schodlok, Michael P.
  • The Cryosphere, Vol. 12, Issue 11
  • DOI: 10.5194/tc-12-3511-2018

Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model
journal, January 2009

  • Bueler, Ed; Brown, Jed
  • Journal of Geophysical Research, Vol. 114, Issue F3
  • DOI: 10.1029/2008JF001179

Progress in Numerical Modeling of Antarctic Ice-Sheet Dynamics
journal, July 2017


Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula
journal, January 1996

  • Vaughan, D. G.; Doake, C. S. M.
  • Nature, Vol. 379, Issue 6563
  • DOI: 10.1038/379328a0

The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description
journal, January 2011


Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability
journal, January 2014


SHMIP The subglacial hydrology model intercomparison Project
journal, October 2018

  • De Fleurian, Basile; Werder, Mauro A.; Beyer, Sebastian
  • Journal of Glaciology, Vol. 64, Issue 248
  • DOI: 10.1017/jog.2018.78

A box model of circulation and melting in ice shelf caverns
journal, December 2009


Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica
journal, June 2004


Probabilistic framework for assessing the ice sheet contribution to sea level change
journal, February 2013

  • Little, Christopher M.; Urban, Nathan M.; Oppenheimer, Michael
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 9
  • DOI: 10.1073/pnas.1214457110

Ice flux divergence anomalies on 79north Glacier, Greenland: THE 79NORTH GLACIER
journal, May 2011

  • Seroussi, H.; Morlighem, M.; Rignot, E.
  • Geophysical Research Letters, Vol. 38, Issue 9
  • DOI: 10.1029/2011GL047338

Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge
journal, January 2019

  • Morlighem, Mathieu; Wood, Michael; Seroussi, Hélène
  • The Cryosphere, Vol. 13, Issue 2
  • DOI: 10.5194/tc-13-723-2019

Ice sheet grounding line dynamics: Steady states, stability, and hysteresis
journal, January 2007


Potential sea-level rise from Antarctic ice-sheet instability constrained by observations
journal, November 2015

  • Ritz, Catherine; Edwards, Tamsin L.; Durand, Gaël
  • Nature, Vol. 528, Issue 7580
  • DOI: 10.1038/nature16147

The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet
journal, January 2018

  • Quiquet, Aurélien; Dumas, Christophe; Ritz, Catherine
  • Geoscientific Model Development, Vol. 11, Issue 12
  • DOI: 10.5194/gmd-11-5003-2018

Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher-order model: ANTARCTIC BASAL FRICTION INVERSION
journal, September 2013

  • Morlighem, M.; Seroussi, H.; Larour, E.
  • Journal of Geophysical Research: Earth Surface, Vol. 118, Issue 3
  • DOI: 10.1002/jgrf.20125

Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models
journal, January 2014

  • Levermann, A.; Winkelmann, R.; Nowicki, S.
  • Earth System Dynamics, Vol. 5, Issue 2
  • DOI: 10.5194/esd-5-271-2014

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica
journal, June 1999

  • Petit, J. R.; Jouzel, J.; Raynaud, D.
  • Nature, Vol. 399, Issue 6735
  • DOI: 10.1038/20859

An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1)
journal, January 2010


Kinematic first-order calving law implies potential for abrupt ice-shelf retreat
journal, January 2012


Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica: SEARISE ANTARCTICA
journal, June 2013

  • Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako
  • Journal of Geophysical Research: Earth Surface, Vol. 118, Issue 2
  • DOI: 10.1002/jgrf.20081

Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration
journal, January 2015


Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios
journal, October 2015

  • Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.
  • Nature Geoscience, Vol. 8, Issue 12
  • DOI: 10.1038/ngeo2563

Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model
journal, January 2014

  • Van Wessem, J. M.; Reijmer, C. H.; Morlighem, M.
  • Journal of Glaciology, Vol. 60, Issue 222
  • DOI: 10.3189/2014JoG14J051

Recent Progress in Greenland Ice Sheet Modelling
journal, November 2017

  • Goelzer, Heiko; Robinson, Alexander; Seroussi, Helene
  • Current Climate Change Reports, Vol. 3, Issue 4
  • DOI: 10.1007/s40641-017-0073-y

Antarctic sub-shelf melt rates via PICO
journal, January 2018


Accelerated Sea-Level Rise from West Antarctica
journal, October 2004


Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison
journal, January 2018


Description of a hybrid ice sheet-shelf model, and application to Antarctica
journal, January 2012


Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation: ICE-OCEAN MODELING OF THWAITES GLACIER
journal, June 2017

  • Seroussi, H.; Nakayama, Y.; Larour, E.
  • Geophysical Research Letters, Vol. 44, Issue 12
  • DOI: 10.1002/2017GL072910

Glacier Surge After Ice Shelf Collapse
journal, March 2003


Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise
journal, July 2019

  • Robel, Alexander A.; Seroussi, Hélène; Roe, Gerard H.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 30
  • DOI: 10.1073/pnas.1904822116

West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability
journal, August 2018


Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission
journal, January 2006

  • Arthern, Robert J.; Winebrenner, Dale P.; Vaughan, David G.
  • Journal of Geophysical Research, Vol. 111, Issue D6
  • DOI: 10.1029/2004JD005667

Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change
journal, January 2019


Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet
journal, October 2017

  • Asay-Davis, Xylar S.; Jourdain, Nicolas C.; Nakayama, Yoshihiro
  • Current Climate Change Reports, Vol. 3, Issue 4
  • DOI: 10.1007/s40641-017-0071-0

Global environmental consequences of twenty-first-century ice-sheet melt
journal, February 2019


Parameterization of the Annual Surface Temperature and Mass Balance of Antarctica
journal, January 1990


Capabilities and performance of Elmer/Ice, a new-generation ice sheet model
journal, January 2013

  • Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.
  • Geoscientific Model Development, Vol. 6, Issue 4
  • DOI: 10.5194/gmd-6-1299-2013

Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6
journal, January 2015


The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet
journal, January 2011


Numerical simulations of major ice streams in Western Dronning Maud Land, Antarctica, under wet and dry basal conditions
journal, January 2014

  • Kleiner, Thomas; Humbert, Angelika
  • Journal of Glaciology, Vol. 60, Issue 220
  • DOI: 10.3189/2014JoG13J006

Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier: THE FRICTION LAW UNDER PIG
journal, October 2016

  • Gillet-Chaulet, F.; Durand, G.; Gagliardini, O.
  • Geophysical Research Letters, Vol. 43, Issue 19
  • DOI: 10.1002/2016GL069937

Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model
journal, January 2016

  • Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France
  • Climate of the Past, Vol. 12, Issue 12
  • DOI: 10.5194/cp-12-2195-2016

A variationally derived, depth-integrated approximation to a higher-order glaciological flow model
journal, January 2011


A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically-based calving law: A CALVING LAW BASED ON DAMAGE MECHANICS
journal, September 2012

  • Borstad, C. P.; Khazendar, A.; Larour, E.
  • Geophysical Research Letters, Vol. 39, Issue 18
  • DOI: 10.1029/2012GL053317

An enthalpy formulation for glaciers and ice sheets
journal, January 2012

  • Aschwanden, Andy; Bueler, Ed; Khroulev, Constantine
  • Journal of Glaciology, Vol. 58, Issue 209
  • DOI: 10.3189/2012JoG11J088

Exploring the Recovery Lakes region and interior Dronning Maud Land, East Antarctica, with airborne gravity, magnetic and radar measurements
journal, September 2017

  • Forsberg, Rene; Olesen, Arne V.; Ferraccioli, Fausto
  • Geological Society, London, Special Publications, Vol. 461, Issue 1
  • DOI: 10.1144/SP461.17

Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland: SEARISE GREENLAND
journal, June 2013

  • Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako
  • Journal of Geophysical Research: Earth Surface, Vol. 118, Issue 2
  • DOI: 10.1002/jgrf.20076

Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)
journal, January 2013

  • Bindschadler, Robert A.; Nowicki, Sophie; Abe-Ouchi, Ayako
  • Journal of Glaciology, Vol. 59, Issue 214
  • DOI: 10.3189/2013JoG12J125

Volume loss from Antarctic ice shelves is accelerating
journal, March 2015


Basal friction of Fleming Glacier, Antarctica – Part 1: Sensitivity of inversion to temperature and bedrock uncertainty
journal, January 2018

  • Zhao, Chen; Gladstone, Rupert M.; Warner, Roland C.
  • The Cryosphere, Vol. 12, Issue 8
  • DOI: 10.5194/tc-12-2637-2018

The multi-millennial Antarctic commitment to future sea-level rise
journal, October 2015

  • Golledge, N. R.; Kowalewski, D. E.; Naish, T. R.
  • Nature, Vol. 526, Issue 7573
  • DOI: 10.1038/nature15706

Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat
journal, June 2010

  • Jenkins, Adrian; Dutrieux, Pierre; Jacobs, Stanley S.
  • Nature Geoscience, Vol. 3, Issue 7
  • DOI: 10.1038/ngeo890

The Reference Elevation Model of Antarctica
journal, January 2019

  • Howat, Ian M.; Porter, Claire; Smith, Benjamin E.
  • The Cryosphere, Vol. 13, Issue 2
  • DOI: 10.5194/tc-13-665-2019

Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data
journal, July 2005


West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing
journal, August 2019

  • Holland, Paul R.; Bracegirdle, Thomas J.; Dutrieux, Pierre
  • Nature Geoscience, Vol. 12, Issue 9
  • DOI: 10.1038/s41561-019-0420-9

Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modelling
journal, January 2000


Dependence of century-scale projections of the Greenland ice sheet on its thermal regime
journal, January 2013

  • Seroussi, H.; Morlighem, M.; Rignot, E.
  • Journal of Glaciology, Vol. 59, Issue 218
  • DOI: 10.3189/2013JoG13J054

A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica
journal, January 2012


Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes
journal, January 2019

  • Agosta, Cécile; Amory, Charles; Kittel, Christoph
  • The Cryosphere, Vol. 13, Issue 1
  • DOI: 10.5194/tc-13-281-2019

Recent Retreat of Wilkins Ice Shelf Reveals New Insights in Ice Shelf Breakup Mechanisms
journal, April 2009


West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster
journal, January 1978


The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet
journal, January 2000


Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes: LARSEN B CHAIN REACTION LAKE DRAINAGE
journal, November 2013

  • Banwell, Alison F.; MacAyeal, Douglas R.; Sergienko, Olga V.
  • Geophysical Research Letters, Vol. 40, Issue 22
  • DOI: 10.1002/2013GL057694

The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming
journal, August 1999


initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6
journal, January 2019


Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
journal, January 2020

  • Cornford, Stephen L.; Seroussi, Helene; Asay-Davis, Xylar S.
  • The Cryosphere, Vol. 14, Issue 7
  • DOI: 10.5194/tc-14-2283-2020

Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics: ICE-SHELF MELTING AND BUTTRESSING
journal, July 2010

  • Gagliardini, O.; Durand, G.; Zwinger, T.
  • Geophysical Research Letters, Vol. 37, Issue 14
  • DOI: 10.1029/2010GL043334

Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise: ACCELERATION OF ICE SHEET LOSS
journal, March 2011

  • Rignot, E.; Velicogna, I.; van den Broeke, M. R.
  • Geophysical Research Letters, Vol. 38, Issue 5
  • DOI: 10.1029/2011GL046583

Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP)
journal, September 2020


Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica
journal, January 2004


Heat Flux Distribution of Antarctica Unveiled
journal, November 2017

  • Martos, Yasmina M.; Catalán, Manuel; Jordan, Tom A.
  • Geophysical Research Letters, Vol. 44, Issue 22
  • DOI: 10.1002/2017GL075609

A parameterization of ice shelf–ocean interaction for climate models
journal, January 2003


Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss
journal, November 2015

  • Gomez, Natalya; Pollard, David; Holland, David
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9798

Mass balance of the Antarctic Ice Sheet from 1992 to 2017
journal, June 2018


Glacier Calving in Greenland
journal, October 2017


Missing Evidence of Widespread Subglacial Lakes at Recovery Glacier, Antarctica
journal, November 2018

  • Humbert, Angelika; Steinhage, Daniel; Helm, Veit
  • Journal of Geophysical Research: Earth Surface, Vol. 123, Issue 11
  • DOI: 10.1029/2017JF004591

Albany/FELIX : a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis
journal, January 2015

  • Tezaur, I. K.; Perego, M.; Salinger, A. G.
  • Geoscientific Model Development, Vol. 8, Issue 4
  • DOI: 10.5194/gmd-8-1197-2015

Calving fluxes and basal melt rates of Antarctic ice shelves
journal, September 2013

  • Depoorter, M. A.; Bamber, J. L.; Griggs, J. A.
  • Nature, Vol. 502, Issue 7469
  • DOI: 10.1038/nature12567

Multidecadal warming of Antarctic waters
journal, December 2014

  • Schmidtko, Sunke; Heywood, Karen J.; Thompson, Andrew F.
  • Science, Vol. 346, Issue 6214
  • DOI: 10.1126/science.1256117

The far reach of ice-shelf thinning in Antarctica
journal, December 2017


The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Simulation of the future sea level contribution of Greenland with a new glacial system model
journal, January 2018


Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
journal, January 2016

  • Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël
  • Geoscientific Model Development, Vol. 9, Issue 7
  • DOI: 10.5194/gmd-9-2471-2016

Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6
journal, January 2016

  • Nowicki, Sophie M. J.; Payne, Anthony; Larour, Eric
  • Geoscientific Model Development, Vol. 9, Issue 12
  • DOI: 10.5194/gmd-9-4521-2016

Impact of bedrock description on modeling ice sheet dynamics: BEDROCK DESCRIPTION TO MODEL ICE SHEET
journal, October 2011

  • Durand, G.; Gagliardini, O.; Favier, L.
  • Geophysical Research Letters, Vol. 38, Issue 20
  • DOI: 10.1029/2011GL048892

Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model
journal, January 2019

  • Pelle, Tyler; Morlighem, Mathieu; Bondzio, Johannes H.
  • The Cryosphere, Vol. 13, Issue 3
  • DOI: 10.5194/tc-13-1043-2019

Optimal initial conditions for coupling ice sheet models to Earth system models: PEREGO ET AL.
journal, September 2014

  • Perego, Mauro; Price, Stephen; Stadler, Georg
  • Journal of Geophysical Research: Earth Surface, Vol. 119, Issue 9
  • DOI: 10.1002/2014JF003181

Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes
journal, January 2018

  • Lazeroms, Werner M. J.; Jenkins, Adrian; Gudmundsson, G. Hilmar
  • The Cryosphere, Vol. 12, Issue 1
  • DOI: 10.5194/tc-12-49-2018

Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice
journal, November 2011

  • Bassis, J. N.; Walker, C. C.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 468, Issue 2140
  • DOI: 10.1098/rspa.2011.0422

Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure
journal, February 2015

  • Pollard, David; DeConto, Robert M.; Alley, Richard B.
  • Earth and Planetary Science Letters, Vol. 412
  • DOI: 10.1016/j.epsl.2014.12.035

Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS
journal, March 2016


Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law
journal, January 2019

  • Brondex, Julien; Gillet-Chaulet, Fabien; Gagliardini, Olivier
  • The Cryosphere, Vol. 13, Issue 1
  • DOI: 10.5194/tc-13-177-2019

Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
journal, January 2020

  • Levermann, Anders; Winkelmann, Ricarda; Albrecht, Torsten
  • Earth System Dynamics, Vol. 11, Issue 1
  • DOI: 10.5194/esd-11-35-2020

Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism
journal, January 2003

  • MacAyeal, Douglas R.; Scambos, Ted A.; Hulbe, Christina L.
  • Journal of Glaciology, Vol. 49, Issue 164
  • DOI: 10.3189/172756503781830863

Description and evaluation of the Community Ice Sheet Model (CISM) v2.1
journal, January 2019

  • Lipscomb, William H.; Price, Stephen F.; Hoffman, Matthew J.
  • Geoscientific Model Development, Vol. 12, Issue 1
  • DOI: 10.5194/gmd-12-387-2019

A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling: SMB ANTARCTICA
journal, February 2012

  • Lenaerts, J. T. M.; van den Broeke, M. R.; van de Berg, W. J.
  • Geophysical Research Letters, Vol. 39, Issue 4
  • DOI: 10.1029/2011GL050713

Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events
journal, December 1993


MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids
journal, January 2018

  • Hoffman, Matthew J.; Perego, Mauro; Price, Stephen F.
  • Geoscientific Model Development, Vol. 11, Issue 9
  • DOI: 10.5194/gmd-11-3747-2018

On the Sliding of Glaciers
journal, January 1957


Revisiting Antarctic ice loss due to marine ice-cliff instability
journal, February 2019


Spatial distribution of net surface accumulation on the Antarctic ice sheet
journal, January 2000


A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast
journal, December 1990


Ice shelf basal melt rates around Antarctica from simulations and observations: ICE SHELF BASAL MELT AROUND ANTARCTICA
journal, February 2016

  • Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.
  • Journal of Geophysical Research: Oceans, Vol. 121, Issue 2
  • DOI: 10.1002/2015JC011117

Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf
journal, January 2004


Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet
journal, December 2019


Trends in Antarctic Ice Sheet Elevation and Mass
journal, July 2019

  • Shepherd, Andrew; Gilbert, Lin; Muir, Alan S.
  • Geophysical Research Letters, Vol. 46, Issue 14
  • DOI: 10.1029/2019GL082182

Grounding line migration in an adaptive mesh ice sheet model
journal, January 2010

  • Gladstone, R. M.; Lee, V.; Vieli, A.
  • Journal of Geophysical Research, Vol. 115, Issue F4
  • DOI: 10.1029/2009JF001615

The Greenland and Antarctic ice sheets under 1.5 °C global warming
journal, November 2018


Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016)
journal, January 2018

  • van Wessem, Jan Melchior; van de Berg, Willem Jan; Noël, Brice P. Y.
  • The Cryosphere, Vol. 12, Issue 4
  • DOI: 10.5194/tc-12-1479-2018

Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming
journal, March 1991

  • Doake, C. S. M.; Vaughan, D. G.
  • Nature, Vol. 350, Issue 6316
  • DOI: 10.1038/350328a0

Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years
journal, January 2014


Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet
journal, January 2012

  • Helsen, M. M.; van de Wal, R. S. W.; van den Broeke, M. R.
  • The Cryosphere, Vol. 6, Issue 2
  • DOI: 10.5194/tc-6-255-2012

Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
journal, January 2018