skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Phosphonate-Functionalized Quinone Redox Flow Battery at Near-Neutral pH with Record Capacity Retention Rate

Abstract

A highly stable phosphonate-functionalized anthraquinone is introduced as the redox-active material in a negative potential electrolyte (negolyte) for aqueous redox flow batteries operating at nearly neutral pH. Here, the design and synthesis of 2,6-DPPEAQ, (((9,10-dioxo-9,10-dihydroanthracene-2,6-diyl)bis(oxy))bis(propane-3,1-diyl))bis(phosphonic acid), which has a high solubility at pH 9 and above, is described. Chemical stability studies demonstrate high stability at both pH 9 and 12. By pairing 2,6-DPPEAQ with a potassium ferri/ferrocyanide positive electrolyte across an inexpensive, nonfluorinated permselective polymer membrane, this near-neutral quinone flow battery exhibits an open-circuit voltage of 1.0 V and a capacity fade rate of 0.00036% per cycle and 0.014% per day, which is the lowest ever reported for any flow battery in the absence of rebalancing processes. It is further demonstrated that the negolyte pH drifts upward upon atmospheric oxygen penetration but, when oxygen is excluded, oscillates reversibly between 9 and 12 during cycling. These results enhance the suitability of aqueous-soluble redox-active organics for use in large-scale energy storage, potentially enabling massive penetration of intermittent renewable electricity.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States). John A. Paulson School of Engineering and Applied Sciences (SEAS); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF); Innovation Fund Denmark; Massachusetts Clean Energy Technology Center
OSTI Identifier:
1661884
Alternate Identifier(s):
OSTI ID: 1493638
Grant/Contract Number:  
AC05-76RL01830; 428977
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 12; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; energy storage; long lifetime; quinone; redox‐flow batteries

Citation Formats

Ji, Yunlong, Goulet, Marc-Antoni, Pollack, Daniel A., Kwabi, David G., Jin, Shijian, De Porcellinis, Diana, Kerr, Emily F., Gordan, Roy G., and Aziz, Michael J. A Phosphonate-Functionalized Quinone Redox Flow Battery at Near-Neutral pH with Record Capacity Retention Rate. United States: N. p., 2019. Web. doi:10.1002/aenm.201900039.
Ji, Yunlong, Goulet, Marc-Antoni, Pollack, Daniel A., Kwabi, David G., Jin, Shijian, De Porcellinis, Diana, Kerr, Emily F., Gordan, Roy G., & Aziz, Michael J. A Phosphonate-Functionalized Quinone Redox Flow Battery at Near-Neutral pH with Record Capacity Retention Rate. United States. doi:10.1002/aenm.201900039.
Ji, Yunlong, Goulet, Marc-Antoni, Pollack, Daniel A., Kwabi, David G., Jin, Shijian, De Porcellinis, Diana, Kerr, Emily F., Gordan, Roy G., and Aziz, Michael J. Wed . "A Phosphonate-Functionalized Quinone Redox Flow Battery at Near-Neutral pH with Record Capacity Retention Rate". United States. doi:10.1002/aenm.201900039. https://www.osti.gov/servlets/purl/1661884.
@article{osti_1661884,
title = {A Phosphonate-Functionalized Quinone Redox Flow Battery at Near-Neutral pH with Record Capacity Retention Rate},
author = {Ji, Yunlong and Goulet, Marc-Antoni and Pollack, Daniel A. and Kwabi, David G. and Jin, Shijian and De Porcellinis, Diana and Kerr, Emily F. and Gordan, Roy G. and Aziz, Michael J.},
abstractNote = {A highly stable phosphonate-functionalized anthraquinone is introduced as the redox-active material in a negative potential electrolyte (negolyte) for aqueous redox flow batteries operating at nearly neutral pH. Here, the design and synthesis of 2,6-DPPEAQ, (((9,10-dioxo-9,10-dihydroanthracene-2,6-diyl)bis(oxy))bis(propane-3,1-diyl))bis(phosphonic acid), which has a high solubility at pH 9 and above, is described. Chemical stability studies demonstrate high stability at both pH 9 and 12. By pairing 2,6-DPPEAQ with a potassium ferri/ferrocyanide positive electrolyte across an inexpensive, nonfluorinated permselective polymer membrane, this near-neutral quinone flow battery exhibits an open-circuit voltage of 1.0 V and a capacity fade rate of 0.00036% per cycle and 0.014% per day, which is the lowest ever reported for any flow battery in the absence of rebalancing processes. It is further demonstrated that the negolyte pH drifts upward upon atmospheric oxygen penetration but, when oxygen is excluded, oscillates reversibly between 9 and 12 during cycling. These results enhance the suitability of aqueous-soluble redox-active organics for use in large-scale energy storage, potentially enabling massive penetration of intermittent renewable electricity.},
doi = {10.1002/aenm.201900039},
journal = {Advanced Energy Materials},
number = 12,
volume = 9,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage
journal, January 2017

  • Hu, Bo; DeBruler, Camden; Rhodes, Zayn
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b10984

An aqueous, polymer-based redox-flow battery using non-corrosive, safe and low-cost materials
journal, October 2015

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 527, Issue 7576, p. 78-81
  • DOI: 10.1038/nature15746

Progress and prospects of next-generation redox flow batteries
journal, November 2018


Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic acid
journal, July 2018

  • Dieterich, Vincent; Milshtein, Jarrod D.; Barton, John L.
  • Translational Materials Research, Vol. 5, Issue 3
  • DOI: 10.1088/2053-1613/aacb0e

Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones
journal, October 2007

  • Quan, May; Sanchez, Daniel; Wasylkiw, Mark F.
  • Journal of the American Chemical Society, Vol. 129, Issue 42, p. 12847-12856
  • DOI: 10.1021/ja0743083

Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications
journal, February 2017

  • Sevov, Christo S.; Hickey, David P.; Cook, Monique E.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00147

An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
journal, January 2014

  • Yang, Bo; Hoober-Burkhardt, Lena; Wang, Fang
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.1001409jes

High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes
journal, January 2016

  • Yang, Bo; Hoober-Burkhardt, Lena; Krishnamoorthy, Sankarganesh
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1371607jes

Synthesis and characterization of TEMPO- and viologen-polymers for water-based redox-flow batteries
journal, January 2015

  • Janoschka, T.; Morgenstern, S.; Hiller, H.
  • Polymer Chemistry, Vol. 6, Issue 45
  • DOI: 10.1039/C5PY01602A

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


A biomimetic redox flow battery based on flavin mononucleotide
journal, October 2016

  • Orita, Akihiro; Verde, Michael G.; Sakai, Masanori
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13230

Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries
journal, December 2017


Two electron utilization of methyl viologen anolyte in nonaqueous organic redox flow battery
journal, September 2018


Aqueous 2,2,6,6-Tetramethylpiperidine- N -oxyl Catholytes for a High-Capacity and High Current Density Oxygen-Insensitive Hybrid-Flow Battery
journal, January 2017


TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries
journal, October 2016


Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods
journal, January 2018

  • Goulet, Marc-Antoni; Aziz, Michael J.
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.0891807jes

Comparison of Capacity Retention Rates During Cycling of Quinone-Bromide Flow Batteries
journal, December 2016

  • Gerhardt, Michael R.; Beh, Eugene S.; Tong, Liuchuan
  • MRS Advances, Vol. 2, Issue 8
  • DOI: 10.1557/adv.2016.667

Obtaining a Low and Wide Atomic Layer Deposition Window (150-275 °C) for In 2 O 3 Films Using an In III Amidinate and H 2 O
journal, June 2018

  • Kim, Sang Bok; Jayaraman, Ashwin; Chua, Danny
  • Chemistry - A European Journal, Vol. 24, Issue 38
  • DOI: 10.1002/chem.201802317

High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries
journal, January 2016

  • Milshtein, Jarrod D.; Kaur, Aman Preet; Casselman, Matthew D.
  • Energy & Environmental Science, Vol. 9, Issue 11
  • DOI: 10.1039/C6EE02027E

A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries
journal, June 2018


Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility
journal, December 2016

  • Wedege, Kristina; Dražević, Emil; Konya, Denes
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep39101

Anthraquinone Derivatives in Aqueous Flow Batteries
journal, December 2016

  • Gerhardt, Michael R.; Tong, Liuchuan; Gómez-Bombarelli, Rafael
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201601488

The irreversible momentum of clean energy
journal, January 2017


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

A redox-flow battery with an alloxazine-based organic electrolyte
journal, July 2016


A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte
journal, December 2015

  • Liu, Tianbiao; Wei, Xiaoliang; Nie, Zimin
  • Advanced Energy Materials, Vol. 6, Issue 3, 1501449
  • DOI: 10.1002/aenm.201501449

Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries
journal, December 2017


Flow Batteries
journal, January 2010

  • Nguyen, Trung; Savinell, Robert F.
  • The Electrochemical Society Interface, Vol. 19, Issue 3
  • DOI: 10.1149/2.F06103if

Alkaline quinone flow battery
journal, September 2015


A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention
journal, February 2017


Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
journal, November 2016

  • Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias
  • Angewandte Chemie International Edition, Vol. 56, Issue 3
  • DOI: 10.1002/anie.201604925

Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy
journal, December 2017

  • Yang, Zhengjin; Tong, Liuchuan; Tabor, Daniel P.
  • Advanced Energy Materials, Vol. 8, Issue 8
  • DOI: 10.1002/aenm.201702056

Alkaline Quinone Flow Battery with Long Lifetime at pH 12
journal, September 2018


Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery
journal, April 2015

  • Wei, Xiaoliang; Xu, Wu; Huang, Jinhua
  • Angewandte Chemie International Edition, Vol. 54, Issue 30
  • DOI: 10.1002/anie.201501443

Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, “Green,” High Voltage, and Safe Energy Storage System
journal, January 2016

  • Winsberg, Jan; Janoschka, Tobias; Morgenstern, Sabine
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201505000

A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

    Works referencing / citing this record:

    A pH‐Neutral, Metal‐Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte
    journal, September 2019


    Efficient electrochemical synthesis of robust, densely functionalized water soluble quinones
    journal, January 2020

    • Gerken, James B.; Stamoulis, Alexios; Suh, Sung-Eun
    • Chemical Communications, Vol. 56, Issue 8
    • DOI: 10.1039/c9cc08878d

    Structure reorganization-controlled electron transfer of bipyridine derivatives as organic redox couples
    journal, January 2019

    • Lv, Yang; Liu, Yiyang; Feng, Ting
    • Journal of Materials Chemistry A, Vol. 7, Issue 47
    • DOI: 10.1039/c9ta08910a

    Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries
    journal, January 2019

    • Tabor, Daniel P.; Gómez-Bombarelli, Rafael; Tong, Liuchuan
    • Journal of Materials Chemistry A, Vol. 7, Issue 20
    • DOI: 10.1039/c9ta03219c

    Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries
    journal, January 2020

    • Turner, Nicholas A.; Freeman, Matthew B.; Pratt, Harry D.
    • Chemical Communications, Vol. 56, Issue 18
    • DOI: 10.1039/c9cc08547e

    In situ NMR metrology reveals reaction mechanisms in redox flow batteries
    journal, March 2020


    A pH‐Neutral, Metal‐Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte
    journal, November 2019

    • Hu, Bo; Luo, Jian; Hu, Maowei
    • Angewandte Chemie International Edition, Vol. 58, Issue 46
    • DOI: 10.1002/anie.201907934