DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks

Abstract

Ordered interlayer stacking is intrinsic in two-dimensional covalent organic frameworks (2D COFs) and has strong implications on COF's optoelectronic properties. Reversible interlayer sliding, corresponding to shearing of 2D layers along their basal plane, is an appealing dynamic control of both structures and properties, yet it remains unexplored in the 2D COF field. In this paper, we demonstrate that the reversible interlayer sliding can be realized in an imine-linked tetrathiafulvalene (TTF)-based COF TTF-DMTA. The solvent treatment induces crystalline phase changes between the proposed staircase-like sql net structure and a slightly slipped eclipsed sql net structure. The solvation-induced crystallinity changes correlate well with reversible spectroscopic and electrical conductivity changes as demonstrated in oriented COF thin films. In contrast, no reversible switching is observed in a related TTF-TA COF, which differs from TTF-DMTA in terms of the absence of methoxy groups on the phenylene linkers. This work represents the first 2D COF example of which eclipsed and staircase-like aggregated states are interchangeably accessed via interlayer sliding, an uncharted structural feature that may enable applications such as chemiresistive sensors.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [5]; ORCiD logo [6];  [7];  [8]; ORCiD logo [8];  [9]; ORCiD logo [10];  [4]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [3]
  1. South China Normal Univ., Guangzhou (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry; China University of Geosciences, Beijing (China)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  4. South China Normal Univ., Guangzhou (China)
  5. Univ. de Jaén (Spain)
  6. Univ. de Castilla-La Mancha, Albacete (Spain)
  7. Univ. of California, Berkeley, CA (United States); Nanjing Forestry Univ. (China)
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  9. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  10. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). The Molecular Foundry (TMF) and Advanced Light Source (ALS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; National Natural Science Foundation of China (NNSFC); Natural Science Foundation of Guangdong Province; China Scholarship Council (CSC)
OSTI Identifier:
1661601
Grant/Contract Number:  
AC02-05CH11231; 21603076; 21571070; 21802128; 2018A030313193
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 12; Journal Issue: 16; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; conductivity switching; covalent organic frameworks; interlayer sliding; reversible phase transformation; solvent responsive; tetrathiafulvalene

Citation Formats

Cai, Songliang, Sun, Bing, Li, Xinle, Yan, Yilun, Navarro, Amparo, Garzón-Ruiz, Andrés, Mao, Haiyan, Chatterjee, Ruchira, Yano, Junko, Zhu, Chenhui, Reimer, Jeffrey A., Zheng, Shengrun, Fan, Jun, Zhang, Weiguang, and Liu, Yi. Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. United States: N. p., 2020. Web. doi:10.1021/acsami.0c03280.
Cai, Songliang, Sun, Bing, Li, Xinle, Yan, Yilun, Navarro, Amparo, Garzón-Ruiz, Andrés, Mao, Haiyan, Chatterjee, Ruchira, Yano, Junko, Zhu, Chenhui, Reimer, Jeffrey A., Zheng, Shengrun, Fan, Jun, Zhang, Weiguang, & Liu, Yi. Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. United States. https://doi.org/10.1021/acsami.0c03280
Cai, Songliang, Sun, Bing, Li, Xinle, Yan, Yilun, Navarro, Amparo, Garzón-Ruiz, Andrés, Mao, Haiyan, Chatterjee, Ruchira, Yano, Junko, Zhu, Chenhui, Reimer, Jeffrey A., Zheng, Shengrun, Fan, Jun, Zhang, Weiguang, and Liu, Yi. Thu . "Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks". United States. https://doi.org/10.1021/acsami.0c03280. https://www.osti.gov/servlets/purl/1661601.
@article{osti_1661601,
title = {Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks},
author = {Cai, Songliang and Sun, Bing and Li, Xinle and Yan, Yilun and Navarro, Amparo and Garzón-Ruiz, Andrés and Mao, Haiyan and Chatterjee, Ruchira and Yano, Junko and Zhu, Chenhui and Reimer, Jeffrey A. and Zheng, Shengrun and Fan, Jun and Zhang, Weiguang and Liu, Yi},
abstractNote = {Ordered interlayer stacking is intrinsic in two-dimensional covalent organic frameworks (2D COFs) and has strong implications on COF's optoelectronic properties. Reversible interlayer sliding, corresponding to shearing of 2D layers along their basal plane, is an appealing dynamic control of both structures and properties, yet it remains unexplored in the 2D COF field. In this paper, we demonstrate that the reversible interlayer sliding can be realized in an imine-linked tetrathiafulvalene (TTF)-based COF TTF-DMTA. The solvent treatment induces crystalline phase changes between the proposed staircase-like sql net structure and a slightly slipped eclipsed sql net structure. The solvation-induced crystallinity changes correlate well with reversible spectroscopic and electrical conductivity changes as demonstrated in oriented COF thin films. In contrast, no reversible switching is observed in a related TTF-TA COF, which differs from TTF-DMTA in terms of the absence of methoxy groups on the phenylene linkers. This work represents the first 2D COF example of which eclipsed and staircase-like aggregated states are interchangeably accessed via interlayer sliding, an uncharted structural feature that may enable applications such as chemiresistive sensors.},
doi = {10.1021/acsami.0c03280},
journal = {ACS Applied Materials and Interfaces},
number = 16,
volume = 12,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Covalent organic frameworks (COFs): from design to applications
journal, January 2013


The Organic Flatland-Recent Advances in Synthetic 2D Organic Layers
journal, March 2015

  • Cai, Song-Liang; Zhang, Wei-Guang; Zuckermann, Ronald N.
  • Advanced Materials, Vol. 27, Issue 38
  • DOI: 10.1002/adma.201500124

The atom, the molecule, and the covalent organic framework
journal, March 2017


Towards Macroscopic Crystalline 2D Polymers
journal, September 2018

  • Feng, Xinliang; Schlüter, A. Dieter
  • Angewandte Chemie International Edition, Vol. 57, Issue 42
  • DOI: 10.1002/anie.201803456

Photostimulus‐Responsive Large‐Area Two‐Dimensional Covalent Organic Framework Films
journal, November 2019

  • Yu, Fei; Liu, Wenbo; Li, Bang
  • Angewandte Chemie International Edition, Vol. 58, Issue 45
  • DOI: 10.1002/anie.201909613

Recent progress in two-dimensional COFs for energy-related applications
journal, January 2017

  • Zhan, Xuejun; Chen, Zhong; Zhang, Qichun
  • Journal of Materials Chemistry A, Vol. 5, Issue 28
  • DOI: 10.1039/C7TA02105D

Two‐Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder‐free Lithium‐Ion Battery
journal, December 2019


Seeded growth of single-crystal two-dimensional covalent organic frameworks
journal, June 2018

  • Evans, Austin M.; Parent, Lucas R.; Flanders, Nathan C.
  • Science, Vol. 361, Issue 6397
  • DOI: 10.1126/science.aar7883

A 2D Covalent Organic Framework with 4.7-nm Pores and Insight into Its Interlayer Stacking
journal, December 2011

  • Spitler, Eric L.; Koo, Brian T.; Novotney, Jennifer L.
  • Journal of the American Chemical Society, Vol. 133, Issue 48
  • DOI: 10.1021/ja206242v

Solvent- and Pressure-Induced Phase Changes in Two 3D Copper Glutarate-Based Metal–Organic Frameworks via Glutarate (+ gauche ⇄ − gauche ) Conformational Isomerism
journal, April 2017

  • Bezuidenhout, Charl X.; Smith, Vincent J.; Esterhuysen, Catharine
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b01764

A Reversible Crystallinity-Preserving Phase Transition in Metal–Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications
journal, June 2015

  • Liu, Dahuan; Liu, Tian-Fu; Chen, Ying-Pin
  • Journal of the American Chemical Society, Vol. 137, Issue 24
  • DOI: 10.1021/jacs.5b02999

A Dynamic Three-Dimensional Covalent Organic Framework
journal, March 2017

  • Ma, Yun-Xiang; Li, Zhi-Jun; Wei, Lei
  • Journal of the American Chemical Society, Vol. 139, Issue 14
  • DOI: 10.1021/jacs.7b01097

Guest-Dependent Dynamics in a 3D Covalent Organic Framework
journal, January 2019

  • Chen, Yichong; Shi, Zhao-Lin; Wei, Lei
  • Journal of the American Chemical Society, Vol. 141, Issue 7
  • DOI: 10.1021/jacs.8b13691

Single-crystal x-ray diffraction structures of covalent organic frameworks
journal, July 2018


Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks
journal, June 2019

  • Sick, Torben; Rotter, Julian M.; Reuter, Stephan
  • Journal of the American Chemical Society, Vol. 141, Issue 32
  • DOI: 10.1021/jacs.9b02800

Urea-Linked Covalent Organic Frameworks
journal, November 2018

  • Zhao, Chenfei; Diercks, Christian S.; Zhu, Chenhui
  • Journal of the American Chemical Society, Vol. 140, Issue 48
  • DOI: 10.1021/jacs.8b10612

Role of Crystal Symmetry in the Reversibility of Stacking-Sequence Changes in Layered Intercalation Electrodes
journal, November 2017


Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging
journal, October 2016

  • Wang, Zhu-Jun; Dong, Jichen; Cui, Yi
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13256

Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework
journal, January 2019

  • Albacete, Pablo; López-Moreno, Alejandro; Mena-Hernando, Sofía
  • Chemical Communications, Vol. 55, Issue 10
  • DOI: 10.1039/C8CC08307J

Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework
journal, September 2018

  • Albacete, Pablo; Martínez, José I.; Li, Xing
  • Journal of the American Chemical Society, Vol. 140, Issue 40
  • DOI: 10.1021/jacs.8b07450

Solvatochromic covalent organic frameworks
journal, September 2018


Enforcing Extended Porphyrin J-Aggregate Stacking in Covalent Organic Frameworks
journal, November 2018

  • Keller, Niklas; Calik, Mona; Sharapa, Dmitry
  • Journal of the American Chemical Society, Vol. 140, Issue 48
  • DOI: 10.1021/jacs.8b08088

Synchronized Offset Stacking: A Concept for Growing Large-Domain and Highly Crystalline 2D Covalent Organic Frameworks
journal, December 2016

  • Auras, Florian; Ascherl, Laura; Hakimioun, Amir H.
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b09787

Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks
journal, February 2016

  • Ascherl, Laura; Sick, Torben; Margraf, Johannes T.
  • Nature Chemistry, Vol. 8, Issue 4
  • DOI: 10.1038/nchem.2444

The Structure of Layered Covalent-Organic Frameworks
journal, January 2011

  • Lukose, Binit; Kuc, Agnieszka; Heine, Thomas
  • Chemistry - A European Journal, Vol. 17, Issue 8
  • DOI: 10.1002/chem.201001290

Bulk Synthesis of Exfoliated Two-Dimensional Polymers Using Hydrazone-Linked Covalent Organic Frameworks
journal, September 2013

  • Bunck, David N.; Dichtel, William R.
  • Journal of the American Chemical Society, Vol. 135, Issue 40
  • DOI: 10.1021/ja408243n

Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries
journal, March 2017

  • Wang, Shan; Wang, Qianyou; Shao, Pengpeng
  • Journal of the American Chemical Society, Vol. 139, Issue 12
  • DOI: 10.1021/jacs.7b02648

Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs)
journal, February 2016

  • Mitra, Shouvik; Kandambeth, Sharath; Biswal, Bishnu P.
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b13533

Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework
journal, January 2014

  • Cai, Song-Liang; Zhang, Yue-Biao; Pun, Andrew B.
  • Chem. Sci., Vol. 5, Issue 12
  • DOI: 10.1039/C4SC02593H

Two-Dimensional Tetrathiafulvalene Covalent Organic Frameworks: Towards Latticed Conductive Organic Salts
journal, April 2014

  • Jin, Shangbin; Sakurai, Tsuneaki; Kowalczyk, Tim
  • Chemistry - A European Journal, Vol. 20, Issue 45
  • DOI: 10.1002/chem.201402844

A Tetrathiafulvalene-Based Electroactive Covalent Organic Framework
journal, September 2014

  • Ding, Huimin; Li, Yonghai; Hu, Hui
  • Chemistry - A European Journal, Vol. 20, Issue 45
  • DOI: 10.1002/chem.201405330

One-Step Construction of Two Different Kinds of Pores in a 2D Covalent Organic Framework
journal, October 2014

  • Zhou, Tian-You; Xu, Shun-Qi; Wen, Qiang
  • Journal of the American Chemical Society, Vol. 136, Issue 45
  • DOI: 10.1021/ja5092936

Oligothiophene-Bridged Conjugated Covalent Organic Frameworks
journal, June 2017

  • Keller, Niklas; Bessinger, Derya; Reuter, Stephan
  • Journal of the American Chemical Society, Vol. 139, Issue 24
  • DOI: 10.1021/jacs.7b01631

Cu 3 (hexaiminotriphenylene) 2 : An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing
journal, February 2015

  • Campbell, Michael G.; Sheberla, Dennis; Liu, Sophie F.
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201411854

Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks
journal, October 2015

  • Campbell, Michael G.; Liu, Sophie F.; Swager, Timothy M.
  • Journal of the American Chemical Society, Vol. 137, Issue 43
  • DOI: 10.1021/jacs.5b09600

Chemiresistive Detection of Gaseous Hydrocarbons and Interrogation of Charge Transport in Cu[Ni(2,3-pyrazinedithiolate) 2 ] by Gas Adsorption
journal, March 2019

  • Aubrey, Michael L.; Kapelewski, Matthew T.; Melville, Jonathan F.
  • Journal of the American Chemical Society, Vol. 141, Issue 12
  • DOI: 10.1021/jacs.9b00654

Two-Dimensional Chemiresistive Covalent Organic Framework with High Intrinsic Conductivity
journal, June 2019

  • Meng, Zheng; Stolz, Robert M.; Mirica, Katherine A.
  • Journal of the American Chemical Society, Vol. 141, Issue 30
  • DOI: 10.1021/jacs.9b03441

Electron transfer reactions in chemistry. Theory and experiment
journal, July 1993


Charge Transport in Organic Semiconductors
journal, April 2007

  • Coropceanu, Veaceslav; Cornil, Jérôme; da Silva Filho, Demetrio A.
  • Chemical Reviews, Vol. 107, Issue 4
  • DOI: 10.1021/cr050140x

Charge transport in high mobility molecular semiconductors: classical models and new theories
journal, January 2011


Computational methods for design of organic materials with high charge mobility
journal, January 2010

  • Wang, Linjun; Nan, Guangjun; Yang, Xiaodi
  • Chem. Soc. Rev., Vol. 39, Issue 2
  • DOI: 10.1039/B816406C