DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

Abstract

The dominant error sources for state-of-the-art laser-free trapped-ion entangling gates are decoherence of the qubit state and the ion motion. The effect of these decoherence mechanisms can be suppressed with additional control fields or with techniques that have the disadvantage of reducing gate speed. In this study, we propose using a near-motional-frequency magnetic field gradient to implement a laser-free gate that is simultaneously resilient to both types of decoherence, does not require additional control fields, and has a relatively small cost in gate speed.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [2];  [3];  [4];  [3]; ORCiD logo [4];  [3]; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  3. National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
  4. National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States); Univ. of Oregon, Eugene, OR (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1661040
Report Number(s):
LLNL-JRNL-792460
Journal ID: ISSN 2469-9926; 990776; TRN: US2203577
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review A
Additional Journal Information:
Journal Volume: 101; Journal Issue: 4; Journal ID: ISSN 2469-9926
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; open quantum systems & decoherence; quantum computation; quantum gates; quantum information with trapped ions; trapped ions; atom & ion trapping & guiding; coherent control; first-principle calculations

Citation Formats

Sutherland, R. T., Srinivas, R., Burd, S. C., Knaack, H. M., Wilson, A. C., Wineland, D. J., Leibfried, D., Allcock, D. C., Slichter, D. H., and Libby, S. B. Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence. United States: N. p., 2020. Web. doi:10.1103/physreva.101.042334.
Sutherland, R. T., Srinivas, R., Burd, S. C., Knaack, H. M., Wilson, A. C., Wineland, D. J., Leibfried, D., Allcock, D. C., Slichter, D. H., & Libby, S. B. Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence. United States. https://doi.org/10.1103/physreva.101.042334
Sutherland, R. T., Srinivas, R., Burd, S. C., Knaack, H. M., Wilson, A. C., Wineland, D. J., Leibfried, D., Allcock, D. C., Slichter, D. H., and Libby, S. B. Wed . "Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence". United States. https://doi.org/10.1103/physreva.101.042334. https://www.osti.gov/servlets/purl/1661040.
@article{osti_1661040,
title = {Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence},
author = {Sutherland, R. T. and Srinivas, R. and Burd, S. C. and Knaack, H. M. and Wilson, A. C. and Wineland, D. J. and Leibfried, D. and Allcock, D. C. and Slichter, D. H. and Libby, S. B.},
abstractNote = {The dominant error sources for state-of-the-art laser-free trapped-ion entangling gates are decoherence of the qubit state and the ion motion. The effect of these decoherence mechanisms can be suppressed with additional control fields or with techniques that have the disadvantage of reducing gate speed. In this study, we propose using a near-motional-frequency magnetic field gradient to implement a laser-free gate that is simultaneously resilient to both types of decoherence, does not require additional control fields, and has a relatively small cost in gate speed.},
doi = {10.1103/physreva.101.042334},
journal = {Physical Review A},
number = 4,
volume = 101,
place = {United States},
year = {Wed Apr 29 00:00:00 EDT 2020},
month = {Wed Apr 29 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum gates and memory using microwave-dressed states
journal, August 2011

  • Timoney, N.; Baumgart, I.; Johanning, M.
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10319

Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force
journal, January 2018


Coherent Error Suppression in Multiqubit Entangling Gates
journal, July 2012


Robust trapped-ion quantum logic gates by continuous dynamical decoupling
journal, April 2012


Errors in trapped-ion quantum gates due to spontaneous photon scattering
journal, April 2007


High fidelity quantum gates of trapped ions in the presence of motional heating
journal, December 2016


Dynamical Decoupling of Open Quantum Systems
journal, March 1999


High-Fidelity Universal Gate Set for Be 9 + Ion Qubits
journal, August 2016


High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
journal, August 2016


Ion-Trap Quantum Logic Using Long-Wavelength Radiation
journal, November 2001


Quantum Computation and Quantum Information
book, January 2011


Designer Spin Pseudomolecule Implemented with Trapped Ions in a Magnetic Gradient
journal, June 2012


Demonstration of a Fundamental Quantum Logic Gate
journal, December 1995


Trapped-Ion Quantum Logic Gates Based on Oscillating Magnetic Fields
journal, August 2008


Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions
journal, January 2015


Trapped-Ion Quantum Logic with Global Radiation Fields
journal, November 2016


High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit
journal, November 2014


Experimental issues in coherent quantum-state manipulation of trapped atomic ions
journal, May 1998

  • Wineland, D. J.; Monroe, C.; Itano, W. M.
  • Journal of Research of the National Institute of Standards and Technology, Vol. 103, Issue 3
  • DOI: 10.6028/jres.103.019

The measurement of power spectra from the point of view of communications engineering — Part I
journal, January 1958


High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves
journal, September 2016


Resilient Entangling Gates for Trapped Ions
journal, November 2018


Trapped-Ion Spin-Motion Coupling with Microwaves and a Near-Motional Oscillating Magnetic Field Gradient
journal, April 2019


Quantum computing with trapped ions
journal, December 2008


Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate
journal, March 2003


Robust and Resource-Efficient Microwave Near-Field Entangling Be + 9 Gate
journal, December 2019


Robust Entanglement Gates for Trapped-Ion Qubits
journal, November 2018


Quantum dynamics of trapped ions in a dynamic field gradient using dressed states
journal, August 2017


Dynamical suppression of decoherence in two-state quantum systems
journal, October 1998


Versatile laser-free trapped-ion entangling gates
journal, March 2019


Fast quantum gates for cold trapped ions
journal, September 2000


Multiparticle Entanglement of Hot Trapped Ions
journal, March 1999


Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays
journal, February 2008


Individual Addressing of Trapped Ions and Coupling of Motional and Spin States Using rf Radiation
journal, February 2009


Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation
journal, January 2015


Quantum Computations with Cold Trapped Ions
journal, May 1995


Ion trap quantum gates with amplitude-modulated laser beams
journal, January 2008


Microwave quantum logic gates for trapped ions
journal, August 2011

  • Ospelkaus, C.; Warring, U.; Colombe, Y.
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10290

Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer
journal, August 2019


Phase-Modulated Decoupling and Error Suppression in Qubit-Oscillator Systems
journal, March 2015


Entanglement and quantum computation with ions in thermal motion
journal, July 2000


Entangled states of trapped atomic ions
journal, June 2008