skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 1, 2021

Title: Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating cations help to fight against the thermodynamic–kinetic dilemma

Abstract

Solvating cations help to lift the thermodynamic-kinetic constrain of an anolyte redoxmer by achieving a synergetic improvement of two conflicting properties: a lower redox potential AND a higher stability of the charged radical anion.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [1];  [3]; ORCiD logo [1];  [1]; ORCiD logo [4];  [5]; ORCiD logo [6]; ORCiD logo [1]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); Univ. of Illinois at Urbana-Champaign, IL (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR) ; Univ. of Illinois at Urbana-Champaign, IL (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); Northern Illinois Univ., DeKalb, IL (United States)
  6. Joint Center for Energy Storage Research;Argonne National Laboratory;Lemont;USA;Chemical Sciences and Engineering Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1660552
Alternate Identifier(s):
OSTI ID: 1615861
Grant/Contract Number:  
AC02-06CH11357; 2018-100
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 8; Journal Issue: 27; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
2,1,3-benzothiadiazole; Non-aqueous flow battery; redox potential; redoxmer; solvation interaction; stability

Citation Formats

Zhao, Yuyue, Yu, Zhou, Robertson, Lily A., Zhang, Jingjing, Shi, Zhangxing, Bheemireddy, Sambasiva R., Shkrob, Ilya A., Z, Y, Li, Tao, Zhang, Zhengcheng, Cheng, Lei, and Zhang, Lu. Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating cations help to fight against the thermodynamic–kinetic dilemma. United States: N. p., 2020. Web. doi:10.1039/d0ta02214d.
Zhao, Yuyue, Yu, Zhou, Robertson, Lily A., Zhang, Jingjing, Shi, Zhangxing, Bheemireddy, Sambasiva R., Shkrob, Ilya A., Z, Y, Li, Tao, Zhang, Zhengcheng, Cheng, Lei, & Zhang, Lu. Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating cations help to fight against the thermodynamic–kinetic dilemma. United States. doi:10.1039/d0ta02214d.
Zhao, Yuyue, Yu, Zhou, Robertson, Lily A., Zhang, Jingjing, Shi, Zhangxing, Bheemireddy, Sambasiva R., Shkrob, Ilya A., Z, Y, Li, Tao, Zhang, Zhengcheng, Cheng, Lei, and Zhang, Lu. Wed . "Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating cations help to fight against the thermodynamic–kinetic dilemma". United States. doi:10.1039/d0ta02214d.
@article{osti_1660552,
title = {Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating cations help to fight against the thermodynamic–kinetic dilemma},
author = {Zhao, Yuyue and Yu, Zhou and Robertson, Lily A. and Zhang, Jingjing and Shi, Zhangxing and Bheemireddy, Sambasiva R. and Shkrob, Ilya A. and Z, Y and Li, Tao and Zhang, Zhengcheng and Cheng, Lei and Zhang, Lu},
abstractNote = {Solvating cations help to lift the thermodynamic-kinetic constrain of an anolyte redoxmer by achieving a synergetic improvement of two conflicting properties: a lower redox potential AND a higher stability of the charged radical anion.},
doi = {10.1039/d0ta02214d},
journal = {Journal of Materials Chemistry. A},
number = 27,
volume = 8,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 1, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution
journal, July 2017

  • Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201701272

Constant pressure molecular dynamics for molecular systems
journal, December 1983


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

A high-performance all-metallocene-based, non-aqueous redox flow battery
journal, January 2017

  • Ding, Yu; Zhao, Yu; Li, Yutao
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE02057G

Elucidating Factors Controlling Long-Term Stability of Radical Anions for Negative Charge Storage in Nonaqueous Redox Flow Batteries
journal, March 2018

  • Zhang, Jingjing; Huang, Jinhua; Robertson, Lily A.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 15
  • DOI: 10.1021/acs.jpcc.8b01434

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

A polyoxometalate flow battery
journal, August 2013


GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
journal, February 2008

  • Hess, Berk; Kutzner, Carsten; van der Spoel, David
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 3
  • DOI: 10.1021/ct700301q

High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane
journal, November 2015


Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


The Chemistry of Redox-Flow Batteries
journal, June 2015

  • Noack, Jens; Roznyatovskaya, Nataliya; Herr, Tatjana
  • Angewandte Chemie International Edition, Vol. 54, Issue 34
  • DOI: 10.1002/anie.201410823

Redox Active Colloids as Discrete Energy Storage Carriers
journal, September 2016

  • Montoto, Elena C.; Nagarjuna, Gavvalapalli; Hui, Jingshu
  • Journal of the American Chemical Society, Vol. 138, Issue 40
  • DOI: 10.1021/jacs.6b06365

Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening
journal, January 2015

  • Cheng, Lei; Assary, Rajeev S.; Qu, Xiaohui
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/jz502319n

Towards understanding the poor thermal stability of V5+ electrolyte solution in Vanadium Redox Flow Batteries
journal, April 2011


The construction of a reliable potential for GeO 2 from first principles
journal, February 2009


Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents
journal, October 2014

  • Nagarjuna, Gavvalapalli; Hui, Jingshu; Cheng, Kevin J.
  • Journal of the American Chemical Society, Vol. 136, Issue 46, p. 16309-16316
  • DOI: 10.1021/ja508482e

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Material design and engineering of next-generation flow-battery technologies
journal, November 2016


Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

Investigation of the Relationship between Solvation Structure and Battery Performance in Highly Concentrated Aqueous Nitroxy Radical Catholyte
journal, December 2017

  • Yang, Ruidong; Zhang, Yong; Takechi, Kensuke
  • The Journal of Physical Chemistry C, Vol. 122, Issue 25
  • DOI: 10.1021/acs.jpcc.8b00915

A redox flow lithium battery based on the redox targeting reactions between LiFePO 4 and iodide
journal, January 2016

  • Huang, Qizhao; Yang, Jing; Ng, Chee Boon
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03764F

Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries
journal, September 2017


A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density
journal, May 2018

  • Xie, Congxin; Zhang, Huamin; Xu, Wenbin
  • Angewandte Chemie International Edition, Vol. 57, Issue 35
  • DOI: 10.1002/anie.201803122

Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
journal, February 2015

  • Li, Bin; Nie, Zimin; Vijayakumar, M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7303

Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations
journal, November 2017

  • Doherty, Brian; Zhong, Xiang; Gathiaka, Symon
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 12
  • DOI: 10.1021/acs.jctc.7b00520

Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries
journal, November 2016

  • Sevov, Christo S.; Fisher, Sydney L.; Thompson, Levi T.
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b07638

Comparing reduced partial charge models with polarizable simulations of ionic liquids
journal, January 2012

  • Schröder, Christian
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 9
  • DOI: 10.1039/c2cp23329k

A molecular dynamics method for simulations in the canonical ensemble
journal, June 1984


Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells
journal, January 2018

  • Huang, Jinhua; Duan, Wentao; Zhang, Jingjing
  • Journal of Materials Chemistry A, Vol. 6, Issue 15
  • DOI: 10.1039/C8TA01059E

The lightest organic radical cation for charge storage in redox flow batteries
journal, August 2016

  • Huang, Jinhua; Pan, Baofei; Duan, Wentao
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep32102

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Polymorphic transitions in single crystals: A new molecular dynamics method
journal, December 1981

  • Parrinello, M.; Rahman, A.
  • Journal of Applied Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.328693

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Semi-Solid Lithium Rechargeable Flow Battery
journal, May 2011

  • Duduta, Mihai; Ho, Bryan; Wood, Vanessa C.
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 511-516
  • DOI: 10.1002/aenm.201100152

“Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability
journal, April 2017


A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery
journal, January 2016


PACKMOL: A package for building initial configurations for molecular dynamics simulations
journal, October 2009

  • Martínez, L.; Andrade, R.; Birgin, E. G.
  • Journal of Computational Chemistry, Vol. 30, Issue 13
  • DOI: 10.1002/jcc.21224

Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks
journal, March 2014

  • Fan, Frank Y.; Woodford, William H.; Li, Zheng
  • Nano Letters, Vol. 14, Issue 4, p. 2210-2218
  • DOI: 10.1021/nl500740t

Progress in redox flow batteries, remaining challenges and their applications in energy storage
journal, January 2012

  • Leung, Puiki; Li, Xiaohong; Ponce de León, Carlos
  • RSC Advances, Vol. 2, Issue 27
  • DOI: 10.1039/c2ra21342g

Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
journal, November 2016

  • Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias
  • Angewandte Chemie International Edition, Vol. 56, Issue 3
  • DOI: 10.1002/anie.201604925