skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on April 18, 2021

Title: Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode

Abstract

Measurements of electron drift properties in liquid and gaseous xenon are reported here. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measured drift velocities and corresponding temperature coefficients respectively are 1 . 97 ± 0 . 04 m m / μ s and ( 0 . 69 ± 0 . 05 ) %/K for liquid xenon, and 1 . 42 ± 0 . 03 m m / μ s and ( + 0 . 11 ± 0 . 01 ) %/K for gaseous xenon at 1.5 bar. In addition, we measure longitudinal diffusion coefficients of 25 . 7 ± 4 . 6 cm 2 /s and 149 ± 23 cm 2 /s, for liquid and gas, respectively. The quantum efficiency of the gold photocathode is studied at the photon energy of 4.73 eV in liquid and gaseous xenon, and vacuum. These charge transport properties and the behavior of photocathodes in a xenon environment are important in designing and calibrating future large scale noble liquid detectors.

Authors:
 [1];  [2];  [1];  [3];  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [16] more »;  [16];  [16];  [3];  [7];  [17];  [2];  [15];  [9];  [3];  [18];  [19];  [4];  [20];  [21];  [15];  [18];  [6];  [22];  [16];  [23];  [24];  [9];  [7];  [25];  [3];  [15];  [6];  [26];  [17];  [13];  [21];  [23];  [2];  [7];  [27];  [18];  [23];  [12];  [6];  [5];  [12];  [28];  [3];  [29];  [18];  [16];  [10];  [24];  [26];  [7];  [21];  [10];  [21];  [11];  [30];  [18];  [31];  [18];  [9];  [29];  [15];  [23];  [16];  [11];  [4];  [4];  [5];  [24];  [29];  [4];  [28];  [30];  [25];  [2];  [17];  [28];  [13];  [24];  [24];  [6];  [6];  [28];  [6];  [17];  [28];  [26];  [17];  [2];  [2];  [2];  [32];  [23];  [15];  [17];  [24];  [17];  [8];  [6];  [12];  [24];  [28];  [17];  [10];  [12];  [16];  [3];  [16];  [4];  [6];  [17];  [28];  [7];  [20];  [7];  [33];  [5];  [15];  [16];  [32];  [7];  [18];  [16];  [16];  [15];  [18];  [16];  [16];  [29];  [16];  [9];  [23];  [10];  [16];  [16];  [5] « less
  1. Stony Brook Univ., NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Colorado State Univ., Fort Collins, CO (United States)
  4. McGill Univ., Montreal, QC (Canada)
  5. Friedrich-Alexander Univ. Erlangen-Nürnberg (Germany)
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  7. Carleton Univ., Ottawa, ON (Canada)
  8. Duke Univ., Durham, NC (United States). Triangle Universities Nuclear Lab.
  9. Univ. of Illinois at Urbana-Champaign, IL (United States)
  10. National Research Centre, Moscow (Russia). Kurchatov Institute
  11. Univ. of South Dakota, Vermillion, SD (United States)
  12. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  13. Rensselaer Polytechnic Inst., Troy, NY (United States)
  14. McGill Univ., Montreal, QC (Canada); TRIUMF, Vancouver, BC (Canada)
  15. Laurentian Univ., Sudbury, ON (Canada)
  16. Chinese Academy of Sciences (CAS), Beijing (China)
  17. Univ. de Sherbrooke, QC (Canada)
  18. Stanford Univ., CA (United States)
  19. Univ. of North Carolina at Wilmington, NC (United States)
  20. Indiana Univ., Bloomington, IN (United States)
  21. Univ. of British Columbia, Vancouver, BC (Canada); TRIUMF, Vancouver, BC (Canada)
  22. TRIUMF, Vancouver, BC (Canada); Univ. of British Columbia, Vancouver, BC (Canada)
  23. Drexel Univ., Philadelphia, PA (United States)
  24. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  25. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  26. Univ. of Massachusetts, Amherst, MA (United States)
  27. Carleton Univ., Ottawa, ON (Canada); TRIUMF, Vancouver, BC (Canada)
  28. Univ. of Alabama, Tuscaloosa, AL (United States)
  29. Yale Univ., New Haven, CT (United States)
  30. Colorado School of Mines, Golden, CO (United States)
  31. IBS Center for Underground Physics, Daejeon (Korea)
  32. TRIUMF, Vancouver, BC (Canada)
  33. Univ. of Bern (Switzerland)
Publication Date:
Research Org.:
Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP); USDOE Office of Science (SC), High Energy Physics (HEP); National Science Foundation (NSF); Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Foundation for Innovation (CFI); A. McDonald Institute; Canada First Research Excellence Fund (CFREF); Fonds de recherche du Québec – Nature et technologies (FRQNT); National Research Council Canada (NRC); Institute for Basic Science (IBS); Russian Foundation for Basic Research (RFBR); Chinese Academy of Sciences (CAS); National Natural Science Foundation of China (NNSFC); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1660467
Grant/Contract Number:  
SC0017970
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 972; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Citation Formats

Njoya, O., Tsang, T., Tarka, M., Fairbank, W., Kumar, K. S., Rao, T., Wager, T., Al Kharusi, S., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., Brodsky, J. P., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cao, L., Cen, W. R., Chambers, C., Chana, B., Charlebois, S. A., Chiu, M., Cleveland, B., Coon, M., Craycraft, A., Dalmasson, J., Daniels, T., Darroch, L., Daugherty, S. J., De St. Croix, A., Der Mesrobian-Kabakian, A., DeVoe, R., Di Vacri, M. L., Dilling, J., Ding, Y. Y., Dolinski, M. J., Dragone, A., Echevers, J., Elbeltagi, M., Fabris, L., Fairbank, D., Farine, J., Ferrara, S., Feyzbakhsh, S., Fontaine, R., Fucarino, A., Gallina, G., Gautam, P., Giacomini, G., Goeldi, D., Gornea, R., Gratta, G., Hansen, E. V., Heffner, M., Hoppe, E. W., Hößl, J., House, A., Hughes, M., Iverson, A., Jamil, A., Jewell, M. J., Jiang, X. S., Karelin, A., Kaufman, L. J., Kodroff, D., Koffas, T., Krücken, R., Kuchenkov, A., Lan, Y., Larson, A., Leach, K. G., Lenardo, B. G., Leonard, D. S., Li, G., Li, S., Li, Z., Licciardi, C., Lin, Y. H., Lv, P., MacLellan, R., McElroy, T., Medina-Peregrina, M., Michel, T., Mong, B., Moore, D. C., Murray, K., Nakarmi, P., Natzke, C. R., Newby, R. J., Ning, Z., Nolet, F., Nusair, O., Odgers, K., Odian, A., Oriunno, M., Orrell, J. L., Ortega, G. S., Ostrovskiy, I., Overman, C. T., Parent, S., Piepke, A., Pocar, A., Pratte, J.-F., Radeka, V., Raguzin, E., Rescia, S., Retière, F., Richman, M., Robinson, A., Rossignol, T., Rowson, P. C., Roy, N., Runge, J., Saldanha, R., Sangiorgio, S., Skarpaas VIII, K., Soma, A. K., St-Hilaire, G., Stekhanov, V., Stiegler, T., Sun, X. L., Todd, J., Tolba, T., Totev, T. I., Tsang, R., Vachon, F., Veeraraghavan, V., Viel, S., Visser, G., Vivo-Vilches, C., Vuilleumier, J.-L., Wagenpfeil, M., Walent, M., Wang, Q., Ward, M., Watkins, J., Weber, M., Wei, W., Wen, L. J., Wichoski, U., Wu, S. X., Wu, W. H., Wu, X., Xia, Q., Yang, H., Yang, L., Yen, Y.-R., Zeldovich, O., Zhao, J., Zhou, Y., and Ziegler, T. Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode. United States: N. p., 2020. Web. doi:10.1016/j.nima.2020.163965.
Njoya, O., Tsang, T., Tarka, M., Fairbank, W., Kumar, K. S., Rao, T., Wager, T., Al Kharusi, S., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., Brodsky, J. P., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cao, L., Cen, W. R., Chambers, C., Chana, B., Charlebois, S. A., Chiu, M., Cleveland, B., Coon, M., Craycraft, A., Dalmasson, J., Daniels, T., Darroch, L., Daugherty, S. J., De St. Croix, A., Der Mesrobian-Kabakian, A., DeVoe, R., Di Vacri, M. L., Dilling, J., Ding, Y. Y., Dolinski, M. J., Dragone, A., Echevers, J., Elbeltagi, M., Fabris, L., Fairbank, D., Farine, J., Ferrara, S., Feyzbakhsh, S., Fontaine, R., Fucarino, A., Gallina, G., Gautam, P., Giacomini, G., Goeldi, D., Gornea, R., Gratta, G., Hansen, E. V., Heffner, M., Hoppe, E. W., Hößl, J., House, A., Hughes, M., Iverson, A., Jamil, A., Jewell, M. J., Jiang, X. S., Karelin, A., Kaufman, L. J., Kodroff, D., Koffas, T., Krücken, R., Kuchenkov, A., Lan, Y., Larson, A., Leach, K. G., Lenardo, B. G., Leonard, D. S., Li, G., Li, S., Li, Z., Licciardi, C., Lin, Y. H., Lv, P., MacLellan, R., McElroy, T., Medina-Peregrina, M., Michel, T., Mong, B., Moore, D. C., Murray, K., Nakarmi, P., Natzke, C. R., Newby, R. J., Ning, Z., Nolet, F., Nusair, O., Odgers, K., Odian, A., Oriunno, M., Orrell, J. L., Ortega, G. S., Ostrovskiy, I., Overman, C. T., Parent, S., Piepke, A., Pocar, A., Pratte, J.-F., Radeka, V., Raguzin, E., Rescia, S., Retière, F., Richman, M., Robinson, A., Rossignol, T., Rowson, P. C., Roy, N., Runge, J., Saldanha, R., Sangiorgio, S., Skarpaas VIII, K., Soma, A. K., St-Hilaire, G., Stekhanov, V., Stiegler, T., Sun, X. L., Todd, J., Tolba, T., Totev, T. I., Tsang, R., Vachon, F., Veeraraghavan, V., Viel, S., Visser, G., Vivo-Vilches, C., Vuilleumier, J.-L., Wagenpfeil, M., Walent, M., Wang, Q., Ward, M., Watkins, J., Weber, M., Wei, W., Wen, L. J., Wichoski, U., Wu, S. X., Wu, W. H., Wu, X., Xia, Q., Yang, H., Yang, L., Yen, Y.-R., Zeldovich, O., Zhao, J., Zhou, Y., & Ziegler, T. Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode. United States. doi:10.1016/j.nima.2020.163965.
Njoya, O., Tsang, T., Tarka, M., Fairbank, W., Kumar, K. S., Rao, T., Wager, T., Al Kharusi, S., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., Brodsky, J. P., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cao, L., Cen, W. R., Chambers, C., Chana, B., Charlebois, S. A., Chiu, M., Cleveland, B., Coon, M., Craycraft, A., Dalmasson, J., Daniels, T., Darroch, L., Daugherty, S. J., De St. Croix, A., Der Mesrobian-Kabakian, A., DeVoe, R., Di Vacri, M. L., Dilling, J., Ding, Y. Y., Dolinski, M. J., Dragone, A., Echevers, J., Elbeltagi, M., Fabris, L., Fairbank, D., Farine, J., Ferrara, S., Feyzbakhsh, S., Fontaine, R., Fucarino, A., Gallina, G., Gautam, P., Giacomini, G., Goeldi, D., Gornea, R., Gratta, G., Hansen, E. V., Heffner, M., Hoppe, E. W., Hößl, J., House, A., Hughes, M., Iverson, A., Jamil, A., Jewell, M. J., Jiang, X. S., Karelin, A., Kaufman, L. J., Kodroff, D., Koffas, T., Krücken, R., Kuchenkov, A., Lan, Y., Larson, A., Leach, K. G., Lenardo, B. G., Leonard, D. S., Li, G., Li, S., Li, Z., Licciardi, C., Lin, Y. H., Lv, P., MacLellan, R., McElroy, T., Medina-Peregrina, M., Michel, T., Mong, B., Moore, D. C., Murray, K., Nakarmi, P., Natzke, C. R., Newby, R. J., Ning, Z., Nolet, F., Nusair, O., Odgers, K., Odian, A., Oriunno, M., Orrell, J. L., Ortega, G. S., Ostrovskiy, I., Overman, C. T., Parent, S., Piepke, A., Pocar, A., Pratte, J.-F., Radeka, V., Raguzin, E., Rescia, S., Retière, F., Richman, M., Robinson, A., Rossignol, T., Rowson, P. C., Roy, N., Runge, J., Saldanha, R., Sangiorgio, S., Skarpaas VIII, K., Soma, A. K., St-Hilaire, G., Stekhanov, V., Stiegler, T., Sun, X. L., Todd, J., Tolba, T., Totev, T. I., Tsang, R., Vachon, F., Veeraraghavan, V., Viel, S., Visser, G., Vivo-Vilches, C., Vuilleumier, J.-L., Wagenpfeil, M., Walent, M., Wang, Q., Ward, M., Watkins, J., Weber, M., Wei, W., Wen, L. J., Wichoski, U., Wu, S. X., Wu, W. H., Wu, X., Xia, Q., Yang, H., Yang, L., Yen, Y.-R., Zeldovich, O., Zhao, J., Zhou, Y., and Ziegler, T. Sat . "Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode". United States. doi:10.1016/j.nima.2020.163965.
@article{osti_1660467,
title = {Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode},
author = {Njoya, O. and Tsang, T. and Tarka, M. and Fairbank, W. and Kumar, K. S. and Rao, T. and Wager, T. and Al Kharusi, S. and Anton, G. and Arnquist, I. J. and Badhrees, I. and Barbeau, P. S. and Beck, D. and Belov, V. and Bhatta, T. and Brodsky, J. P. and Brown, E. and Brunner, T. and Caden, E. and Cao, G. F. and Cao, L. and Cen, W. R. and Chambers, C. and Chana, B. and Charlebois, S. A. and Chiu, M. and Cleveland, B. and Coon, M. and Craycraft, A. and Dalmasson, J. and Daniels, T. and Darroch, L. and Daugherty, S. J. and De St. Croix, A. and Der Mesrobian-Kabakian, A. and DeVoe, R. and Di Vacri, M. L. and Dilling, J. and Ding, Y. Y. and Dolinski, M. J. and Dragone, A. and Echevers, J. and Elbeltagi, M. and Fabris, L. and Fairbank, D. and Farine, J. and Ferrara, S. and Feyzbakhsh, S. and Fontaine, R. and Fucarino, A. and Gallina, G. and Gautam, P. and Giacomini, G. and Goeldi, D. and Gornea, R. and Gratta, G. and Hansen, E. V. and Heffner, M. and Hoppe, E. W. and Hößl, J. and House, A. and Hughes, M. and Iverson, A. and Jamil, A. and Jewell, M. J. and Jiang, X. S. and Karelin, A. and Kaufman, L. J. and Kodroff, D. and Koffas, T. and Krücken, R. and Kuchenkov, A. and Lan, Y. and Larson, A. and Leach, K. G. and Lenardo, B. G. and Leonard, D. S. and Li, G. and Li, S. and Li, Z. and Licciardi, C. and Lin, Y. H. and Lv, P. and MacLellan, R. and McElroy, T. and Medina-Peregrina, M. and Michel, T. and Mong, B. and Moore, D. C. and Murray, K. and Nakarmi, P. and Natzke, C. R. and Newby, R. J. and Ning, Z. and Nolet, F. and Nusair, O. and Odgers, K. and Odian, A. and Oriunno, M. and Orrell, J. L. and Ortega, G. S. and Ostrovskiy, I. and Overman, C. T. and Parent, S. and Piepke, A. and Pocar, A. and Pratte, J.-F. and Radeka, V. and Raguzin, E. and Rescia, S. and Retière, F. and Richman, M. and Robinson, A. and Rossignol, T. and Rowson, P. C. and Roy, N. and Runge, J. and Saldanha, R. and Sangiorgio, S. and Skarpaas VIII, K. and Soma, A. K. and St-Hilaire, G. and Stekhanov, V. and Stiegler, T. and Sun, X. L. and Todd, J. and Tolba, T. and Totev, T. I. and Tsang, R. and Vachon, F. and Veeraraghavan, V. and Viel, S. and Visser, G. and Vivo-Vilches, C. and Vuilleumier, J.-L. and Wagenpfeil, M. and Walent, M. and Wang, Q. and Ward, M. and Watkins, J. and Weber, M. and Wei, W. and Wen, L. J. and Wichoski, U. and Wu, S. X. and Wu, W. H. and Wu, X. and Xia, Q. and Yang, H. and Yang, L. and Yen, Y.-R. and Zeldovich, O. and Zhao, J. and Zhou, Y. and Ziegler, T.},
abstractNote = {Measurements of electron drift properties in liquid and gaseous xenon are reported here. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measured drift velocities and corresponding temperature coefficients respectively are 1.97±0.04mm/μs and (–0.69±0.05)%/K for liquid xenon, and 1.42±0.03mm/μs and (+0.11±0.01)%/K for gaseous xenon at 1.5 bar. In addition, we measure longitudinal diffusion coefficients of 25.7±4.6 cm2/s and 149±23 cm2/s, for liquid and gas, respectively. The quantum efficiency of the gold photocathode is studied at the photon energy of 4.73 eV in liquid and gaseous xenon, and vacuum. These charge transport properties and the behavior of photocathodes in a xenon environment are important in designing and calibrating future large scale noble liquid detectors.},
doi = {10.1016/j.nima.2020.163965},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = ,
volume = 972,
place = {United States},
year = {2020},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 18, 2021
Publisher's Version of Record

Save / Share: