skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode

Abstract

Measurements of electron drift properties in liquid and gaseous xenon are reported here. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measured drift velocities and corresponding temperature coefficients respectively are 1 . 97 ± 0 . 04 m m / μ s and ( 0 . 69 ± 0 . 05 ) %/K for liquid xenon, and 1 . 42 ± 0 . 03 m m / μ s and ( + 0 . 11 ± 0 . 01 ) %/K for gaseous xenon at 1.5 bar. In addition, we measure longitudinal diffusion coefficients of 25 . 7 ± 4 . 6 cm 2 /s and 149 ± 23 cm 2 /s, for liquid and gas, respectively. The quantum efficiency of the gold photocathode is studied at the photon energy of 4.73 eV in liquid and gaseous xenon, and vacuum. These charge transport properties and the behavior of photocathodes in a xenon environment are important in designing and calibrating future large scale noble liquid detectors.

Authors:
 [1];  [2];  [1];  [3];  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [16] more »;  [16];  [16];  [3];  [7];  [17];  [2];  [15];  [9];  [3];  [18];  [19];  [4];  [20];  [21];  [15];  [18];  [6];  [22];  [16];  [23];  [24];  [9];  [7];  [25];  [3];  [15];  [6];  [26];  [17];  [13];  [21];  [23];  [2];  [7];  [27];  [18];  [23];  [12];  [6];  [5];  [12];  [28];  [3];  [29];  [18];  [16];  [10];  [24];  [26];  [7];  [21];  [10];  [21];  [11];  [30];  [18];  [31];  [18];  [9];  [29];  [15];  [23];  [16];  [11];  [4];  [4];  [5];  [24];  [29];  [4];  [28];  [30];  [25];  [2];  [17];  [28];  [13];  [24];  [24];  [6];  [6];  [28];  [6];  [17];  [28];  [26];  [17];  [2];  [2];  [2];  [32];  [23];  [15];  [17];  [24];  [17];  [8];  [6];  [12];  [24];  [28];  [17];  [10];  [12];  [16];  [3];  [16];  [4];  [6];  [17];  [28];  [7];  [20];  [7];  [33];  [5];  [15];  [16];  [32];  [7];  [18];  [16];  [16];  [15];  [18];  [16];  [16];  [29];  [16];  [9];  [23];  [10];  [16];  [16];  [5] « less
  1. Stony Brook Univ., NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Colorado State Univ., Fort Collins, CO (United States)
  4. McGill Univ., Montreal, QC (Canada)
  5. Friedrich-Alexander Univ. Erlangen-Nürnberg (Germany)
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  7. Carleton Univ., Ottawa, ON (Canada)
  8. Duke Univ., Durham, NC (United States). Triangle Universities Nuclear Lab.
  9. Univ. of Illinois at Urbana-Champaign, IL (United States)
  10. National Research Centre, Moscow (Russia). Kurchatov Institute
  11. Univ. of South Dakota, Vermillion, SD (United States)
  12. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  13. Rensselaer Polytechnic Inst., Troy, NY (United States)
  14. McGill Univ., Montreal, QC (Canada); TRIUMF, Vancouver, BC (Canada)
  15. Laurentian Univ., Sudbury, ON (Canada)
  16. Chinese Academy of Sciences (CAS), Beijing (China)
  17. Univ. de Sherbrooke, QC (Canada)
  18. Stanford Univ., CA (United States)
  19. Univ. of North Carolina at Wilmington, NC (United States)
  20. Indiana Univ., Bloomington, IN (United States)
  21. Univ. of British Columbia, Vancouver, BC (Canada); TRIUMF, Vancouver, BC (Canada)
  22. TRIUMF, Vancouver, BC (Canada); Univ. of British Columbia, Vancouver, BC (Canada)
  23. Drexel Univ., Philadelphia, PA (United States)
  24. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  25. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  26. Univ. of Massachusetts, Amherst, MA (United States)
  27. Carleton Univ., Ottawa, ON (Canada); TRIUMF, Vancouver, BC (Canada)
  28. Univ. of Alabama, Tuscaloosa, AL (United States)
  29. Yale Univ., New Haven, CT (United States)
  30. Colorado School of Mines, Golden, CO (United States)
  31. IBS Center for Underground Physics, Daejeon (Korea)
  32. TRIUMF, Vancouver, BC (Canada)
  33. Univ. of Bern (Switzerland)
Publication Date:
Research Org.:
Stanford Univ., CA (United States); Univ. of Alabama, Tuscaloosa, AL (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Univ. of Massachusetts, Amherst, MA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP); USDOE Office of Science (SC), High Energy Physics (HEP); National Science Foundation (NSF); Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Foundation for Innovation (CFI); A. McDonald Institute; Canada First Research Excellence Fund (CFREF); Fonds de recherche du Québec – Nature et technologies (FRQNT); National Research Council Canada (NRC); Institute for Basic Science (IBS); Russian Foundation for Basic Research (RFBR); Chinese Academy of Sciences (CAS); National Natural Science Foundation of China (NSFC); USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA)
Contributing Org.:
nEXO Collaboration
OSTI Identifier:
1660467
Alternate Identifier(s):
OSTI ID: 1693388; OSTI ID: 1780790; OSTI ID: 1781300; OSTI ID: 1830764
Report Number(s):
BNL-220018-2020-JAAM; LLNL-JRNL-822096
Journal ID: ISSN 0168-9002
Grant/Contract Number:  
SC0017970; FG02-01ER41166; SC0012704; SC0020509; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 972; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 47 OTHER INSTRUMENTATION; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; Engineering - Instrumentation related to nuclear science and technology, Physics - Physics of elementary particles and fields, Physics - Nuclear physics and radiation physics

Citation Formats

Njoya, O., Tsang, T., Tarka, M., Fairbank, W., Kumar, K. S., Rao, T., Wager, T., Al Kharusi, S., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., Brodsky, J. P., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cao, L., Cen, W. R., Chambers, C., Chana, B., Charlebois, S. A., Chiu, M., Cleveland, B., Coon, M., Craycraft, A., Dalmasson, J., Daniels, T., Darroch, L., Daugherty, S. J., De St. Croix, A., Der Mesrobian-Kabakian, A., DeVoe, R., Di Vacri, M. L., Dilling, J., Ding, Y. Y., Dolinski, M. J., Dragone, A., Echevers, J., Elbeltagi, M., Fabris, L., Fairbank, D., Farine, J., Ferrara, S., Feyzbakhsh, S., Fontaine, R., Fucarino, A., Gallina, G., Gautam, P., Giacomini, G., Goeldi, D., Gornea, R., Gratta, G., Hansen, E. V., Heffner, M., Hoppe, E. W., Hößl, J., House, A., Hughes, M., Iverson, A., Jamil, A., Jewell, M. J., Jiang, X. S., Karelin, A., Kaufman, L. J., Kodroff, D., Koffas, T., Krücken, R., Kuchenkov, A., Lan, Y., Larson, A., Leach, K. G., Lenardo, B. G., Leonard, D. S., Li, G., Li, S., Li, Z., Licciardi, C., Lin, Y. H., Lv, P., MacLellan, R., McElroy, T., Medina-Peregrina, M., Michel, T., Mong, B., Moore, D. C., Murray, K., Nakarmi, P., Natzke, C. R., Newby, R. J., Ning, Z., Nolet, F., Nusair, O., Odgers, K., Odian, A., Oriunno, M., Orrell, J. L., Ortega, G. S., Ostrovskiy, I., Overman, C. T., Parent, S., Piepke, A., Pocar, A., Pratte, J.-F., Radeka, V., Raguzin, E., Rescia, S., Retière, F., Richman, M., Robinson, A., Rossignol, T., Rowson, P. C., Roy, N., Runge, J., Saldanha, R., Sangiorgio, S., Skarpaas VIII, K., Soma, A. K., St-Hilaire, G., Stekhanov, V., Stiegler, T., Sun, X. L., Todd, J., Tolba, T., Totev, T. I., Tsang, R., Vachon, F., Veeraraghavan, V., Viel, S., Visser, G., Vivo-Vilches, C., Vuilleumier, J.-L., Wagenpfeil, M., Walent, M., Wang, Q., Ward, M., Watkins, J., Weber, M., Wei, W., Wen, L. J., Wichoski, U., Wu, S. X., Wu, W. H., Wu, X., Xia, Q., Yang, H., Yang, L., Yen, Y.-R., Zeldovich, O., Zhao, J., Zhou, Y., and Ziegler, T.. Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode. United States: N. p., 2020. Web. https://doi.org/10.1016/j.nima.2020.163965.
Njoya, O., Tsang, T., Tarka, M., Fairbank, W., Kumar, K. S., Rao, T., Wager, T., Al Kharusi, S., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., Brodsky, J. P., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cao, L., Cen, W. R., Chambers, C., Chana, B., Charlebois, S. A., Chiu, M., Cleveland, B., Coon, M., Craycraft, A., Dalmasson, J., Daniels, T., Darroch, L., Daugherty, S. J., De St. Croix, A., Der Mesrobian-Kabakian, A., DeVoe, R., Di Vacri, M. L., Dilling, J., Ding, Y. Y., Dolinski, M. J., Dragone, A., Echevers, J., Elbeltagi, M., Fabris, L., Fairbank, D., Farine, J., Ferrara, S., Feyzbakhsh, S., Fontaine, R., Fucarino, A., Gallina, G., Gautam, P., Giacomini, G., Goeldi, D., Gornea, R., Gratta, G., Hansen, E. V., Heffner, M., Hoppe, E. W., Hößl, J., House, A., Hughes, M., Iverson, A., Jamil, A., Jewell, M. J., Jiang, X. S., Karelin, A., Kaufman, L. J., Kodroff, D., Koffas, T., Krücken, R., Kuchenkov, A., Lan, Y., Larson, A., Leach, K. G., Lenardo, B. G., Leonard, D. S., Li, G., Li, S., Li, Z., Licciardi, C., Lin, Y. H., Lv, P., MacLellan, R., McElroy, T., Medina-Peregrina, M., Michel, T., Mong, B., Moore, D. C., Murray, K., Nakarmi, P., Natzke, C. R., Newby, R. J., Ning, Z., Nolet, F., Nusair, O., Odgers, K., Odian, A., Oriunno, M., Orrell, J. L., Ortega, G. S., Ostrovskiy, I., Overman, C. T., Parent, S., Piepke, A., Pocar, A., Pratte, J.-F., Radeka, V., Raguzin, E., Rescia, S., Retière, F., Richman, M., Robinson, A., Rossignol, T., Rowson, P. C., Roy, N., Runge, J., Saldanha, R., Sangiorgio, S., Skarpaas VIII, K., Soma, A. K., St-Hilaire, G., Stekhanov, V., Stiegler, T., Sun, X. L., Todd, J., Tolba, T., Totev, T. I., Tsang, R., Vachon, F., Veeraraghavan, V., Viel, S., Visser, G., Vivo-Vilches, C., Vuilleumier, J.-L., Wagenpfeil, M., Walent, M., Wang, Q., Ward, M., Watkins, J., Weber, M., Wei, W., Wen, L. J., Wichoski, U., Wu, S. X., Wu, W. H., Wu, X., Xia, Q., Yang, H., Yang, L., Yen, Y.-R., Zeldovich, O., Zhao, J., Zhou, Y., & Ziegler, T.. Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode. United States. https://doi.org/10.1016/j.nima.2020.163965
Njoya, O., Tsang, T., Tarka, M., Fairbank, W., Kumar, K. S., Rao, T., Wager, T., Al Kharusi, S., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., Brodsky, J. P., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cao, L., Cen, W. R., Chambers, C., Chana, B., Charlebois, S. A., Chiu, M., Cleveland, B., Coon, M., Craycraft, A., Dalmasson, J., Daniels, T., Darroch, L., Daugherty, S. J., De St. Croix, A., Der Mesrobian-Kabakian, A., DeVoe, R., Di Vacri, M. L., Dilling, J., Ding, Y. Y., Dolinski, M. J., Dragone, A., Echevers, J., Elbeltagi, M., Fabris, L., Fairbank, D., Farine, J., Ferrara, S., Feyzbakhsh, S., Fontaine, R., Fucarino, A., Gallina, G., Gautam, P., Giacomini, G., Goeldi, D., Gornea, R., Gratta, G., Hansen, E. V., Heffner, M., Hoppe, E. W., Hößl, J., House, A., Hughes, M., Iverson, A., Jamil, A., Jewell, M. J., Jiang, X. S., Karelin, A., Kaufman, L. J., Kodroff, D., Koffas, T., Krücken, R., Kuchenkov, A., Lan, Y., Larson, A., Leach, K. G., Lenardo, B. G., Leonard, D. S., Li, G., Li, S., Li, Z., Licciardi, C., Lin, Y. H., Lv, P., MacLellan, R., McElroy, T., Medina-Peregrina, M., Michel, T., Mong, B., Moore, D. C., Murray, K., Nakarmi, P., Natzke, C. R., Newby, R. J., Ning, Z., Nolet, F., Nusair, O., Odgers, K., Odian, A., Oriunno, M., Orrell, J. L., Ortega, G. S., Ostrovskiy, I., Overman, C. T., Parent, S., Piepke, A., Pocar, A., Pratte, J.-F., Radeka, V., Raguzin, E., Rescia, S., Retière, F., Richman, M., Robinson, A., Rossignol, T., Rowson, P. C., Roy, N., Runge, J., Saldanha, R., Sangiorgio, S., Skarpaas VIII, K., Soma, A. K., St-Hilaire, G., Stekhanov, V., Stiegler, T., Sun, X. L., Todd, J., Tolba, T., Totev, T. I., Tsang, R., Vachon, F., Veeraraghavan, V., Viel, S., Visser, G., Vivo-Vilches, C., Vuilleumier, J.-L., Wagenpfeil, M., Walent, M., Wang, Q., Ward, M., Watkins, J., Weber, M., Wei, W., Wen, L. J., Wichoski, U., Wu, S. X., Wu, W. H., Wu, X., Xia, Q., Yang, H., Yang, L., Yen, Y.-R., Zeldovich, O., Zhao, J., Zhou, Y., and Ziegler, T.. Sat . "Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode". United States. https://doi.org/10.1016/j.nima.2020.163965. https://www.osti.gov/servlets/purl/1660467.
@article{osti_1660467,
title = {Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode},
author = {Njoya, O. and Tsang, T. and Tarka, M. and Fairbank, W. and Kumar, K. S. and Rao, T. and Wager, T. and Al Kharusi, S. and Anton, G. and Arnquist, I. J. and Badhrees, I. and Barbeau, P. S. and Beck, D. and Belov, V. and Bhatta, T. and Brodsky, J. P. and Brown, E. and Brunner, T. and Caden, E. and Cao, G. F. and Cao, L. and Cen, W. R. and Chambers, C. and Chana, B. and Charlebois, S. A. and Chiu, M. and Cleveland, B. and Coon, M. and Craycraft, A. and Dalmasson, J. and Daniels, T. and Darroch, L. and Daugherty, S. J. and De St. Croix, A. and Der Mesrobian-Kabakian, A. and DeVoe, R. and Di Vacri, M. L. and Dilling, J. and Ding, Y. Y. and Dolinski, M. J. and Dragone, A. and Echevers, J. and Elbeltagi, M. and Fabris, L. and Fairbank, D. and Farine, J. and Ferrara, S. and Feyzbakhsh, S. and Fontaine, R. and Fucarino, A. and Gallina, G. and Gautam, P. and Giacomini, G. and Goeldi, D. and Gornea, R. and Gratta, G. and Hansen, E. V. and Heffner, M. and Hoppe, E. W. and Hößl, J. and House, A. and Hughes, M. and Iverson, A. and Jamil, A. and Jewell, M. J. and Jiang, X. S. and Karelin, A. and Kaufman, L. J. and Kodroff, D. and Koffas, T. and Krücken, R. and Kuchenkov, A. and Lan, Y. and Larson, A. and Leach, K. G. and Lenardo, B. G. and Leonard, D. S. and Li, G. and Li, S. and Li, Z. and Licciardi, C. and Lin, Y. H. and Lv, P. and MacLellan, R. and McElroy, T. and Medina-Peregrina, M. and Michel, T. and Mong, B. and Moore, D. C. and Murray, K. and Nakarmi, P. and Natzke, C. R. and Newby, R. J. and Ning, Z. and Nolet, F. and Nusair, O. and Odgers, K. and Odian, A. and Oriunno, M. and Orrell, J. L. and Ortega, G. S. and Ostrovskiy, I. and Overman, C. T. and Parent, S. and Piepke, A. and Pocar, A. and Pratte, J.-F. and Radeka, V. and Raguzin, E. and Rescia, S. and Retière, F. and Richman, M. and Robinson, A. and Rossignol, T. and Rowson, P. C. and Roy, N. and Runge, J. and Saldanha, R. and Sangiorgio, S. and Skarpaas VIII, K. and Soma, A. K. and St-Hilaire, G. and Stekhanov, V. and Stiegler, T. and Sun, X. L. and Todd, J. and Tolba, T. and Totev, T. I. and Tsang, R. and Vachon, F. and Veeraraghavan, V. and Viel, S. and Visser, G. and Vivo-Vilches, C. and Vuilleumier, J.-L. and Wagenpfeil, M. and Walent, M. and Wang, Q. and Ward, M. and Watkins, J. and Weber, M. and Wei, W. and Wen, L. J. and Wichoski, U. and Wu, S. X. and Wu, W. H. and Wu, X. and Xia, Q. and Yang, H. and Yang, L. and Yen, Y.-R. and Zeldovich, O. and Zhao, J. and Zhou, Y. and Ziegler, T.},
abstractNote = {Measurements of electron drift properties in liquid and gaseous xenon are reported here. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measured drift velocities and corresponding temperature coefficients respectively are 1.97±0.04mm/μs and (–0.69±0.05)%/K for liquid xenon, and 1.42±0.03mm/μs and (+0.11±0.01)%/K for gaseous xenon at 1.5 bar. In addition, we measure longitudinal diffusion coefficients of 25.7±4.6 cm2/s and 149±23 cm2/s, for liquid and gas, respectively. The quantum efficiency of the gold photocathode is studied at the photon energy of 4.73 eV in liquid and gaseous xenon, and vacuum. These charge transport properties and the behavior of photocathodes in a xenon environment are important in designing and calibrating future large scale noble liquid detectors.},
doi = {10.1016/j.nima.2020.163965},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = ,
volume = 972,
place = {United States},
year = {2020},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Effect of molecular solutes on the electron drift velocity in liquid Ar, Kr, and Xe
journal, July 1976


Design of grid Ionization Chambers
journal, September 1949

  • Bunemann, O.; Cranshaw, T. E.; Harvey, J. A.
  • Canadian Journal of Research, Vol. 27a, Issue 5
  • DOI: 10.1139/cjr49a-019

First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility
journal, March 2014


Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures
journal, August 2019


Improved measurement of the 2 ν β β half-life of 136 Xe with the EXO-200 detector
journal, January 2014


Electron transport measurements in methane using an improved pulsed Townsend technique
journal, July 1986

  • Hunter, S. R.; Carter, J. G.; Christophorou, L. G.
  • Journal of Applied Physics, Vol. 60, Issue 1
  • DOI: 10.1063/1.337690

Recent developments of liquid xenon detectors
journal, May 1982


A Thermodynamic Treatment of Anisotropic Diffusion in an Electric Field
journal, January 1972

  • Robson, Re
  • Australian Journal of Physics, Vol. 25, Issue 6
  • DOI: 10.1071/PH720685

Characterization of large area APDs for the EXO-200 detector
journal, September 2009

  • Neilson, R.; LePort, F.; Pocar, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 608, Issue 1
  • DOI: 10.1016/j.nima.2009.06.029

Searches for double beta decay of Xe 134 with EXO-200
journal, November 2017


Measurement of the drift velocity and transverse diffusion of electrons in liquid xenon with the EXO-200 detector
journal, February 2017


Drift velocity and longitudinal diffusion coefficient of electrons in pure ethene
journal, July 2011


Analysis of the XENON100 dark matter search data
journal, February 2014


Liquid xenon detectors for particle physics and astrophysics
journal, July 2010


Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double- β decay
journal, June 2018


Measurements of swarm parameters and derived electron collision cross sections in methane
journal, May 1989

  • Davies, D. K.; Kline, L. E.; Bies, W. E.
  • Journal of Applied Physics, Vol. 65, Issue 9
  • DOI: 10.1063/1.342642

Measurement of longitudinal electron diffusion in liquid argon
journal, April 2016

  • Li, Yichen; Tsang, Thomas; Thorn, Craig
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 816
  • DOI: 10.1016/j.nima.2016.01.094

A simple and effective purifier for liquid xenon
journal, May 1993

  • Benetti, P.; Bettini, A.; Calligarich, E.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 329, Issue 1-2
  • DOI: 10.1016/0168-9002(93)90954-G

Longitudinal electron diffusion coefficients in gases: Noble gases
journal, June 1992

  • Pack, J. L.; Voshall, R. E.; Phelps, A. V.
  • Journal of Applied Physics, Vol. 71, Issue 11
  • DOI: 10.1063/1.350555

Coulomb explosion of uniformly charged spheroids
journal, November 2011


Electron Mobility and Longitudinal Diffusion Coefficient in High-Density Gaseous Xenon
journal, November 2012

  • Kusano, Hiroki; Matias-Lopes, José A.; Miyajima, Mitsuhiro
  • Japanese Journal of Applied Physics, Vol. 51, Issue 11R
  • DOI: 10.7567/JJAP.51.116301

Theory of Electron Diffusion Parallel to Electric Fields. II. Application to Real Gases
journal, May 1969


Charge Transport in Solid and Liquid Ar, Kr, and Xe
journal, February 1968


Low-mass dark matter search using ionization signals in XENON100
journal, November 2016


Results from a Search for Dark Matter in the Complete LUX Exposure
journal, January 2017


Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC
journal, October 2018

  • Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 904
  • DOI: 10.1016/j.nima.2018.06.077

The XENON1T dark matter experiment
journal, December 2017


Anisotropic diffusion of electrons in liquid xenon with application to improving the sensitivity of direct dark matter searches
journal, April 2011

  • Sorensen, Peter
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 635, Issue 1
  • DOI: 10.1016/j.nima.2011.01.089

Correlated fluctuations between luminescence and ionization in liquid xenon
journal, August 2003


Search for nucleon decays with EXO-200
journal, April 2018


XENON100 dark matter results from a combination of 477 live days
journal, December 2016


Low-energy electron drift and scattering in krypton and xenon
journal, December 1988


Field dependence of electronic recoil signals in a dual-phase liquid xenon time projection chamber
journal, October 2018


Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment
journal, October 2017


Longitudinal diffusion of electrons in electrostatic fields in gases
journal, June 1969