DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes

Abstract

Substituted Li-layered transition-metal oxide (LTMO) electrodes such as LixNiy MnzCo1-y-zO2 (NMC) and LixNiyCo1-y-zAlzO2 (NCA) show reduced first cycle Coulombic efficiency (90-87% under standard cycling conditions) in comparison with the archetypal LixCoO2 (LCO; similar to 98% efficiency). Focusing on LixNi0.8Co0.15Al0.0.5O2 as a model compound, we use operando synchrotron X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopy to demonstrate that the apparent first-cycle capacity loss is a kinetic effect linked to limited Li mobility at x > 0.88, with near full capacity recovered during a potentiostatic hold following the galvanostatic charge- discharge cycle. This kinetic capacity loss, unlike many capacity losses in LTMOs, is independent of the cutoff voltage during delithiation and it is a reversible process. The kinetic limitation manifests not only as the kinetic capacity loss during discharge but as a subtle bimodal compositional distribution early in charge and, also, a dramatic increase of the charge-discharge voltage hysteresis at x > 0.88. 7Li NMR measurements indicate that the kinetic limitation reflects limited Li transport at x > 0.86. Electrochemical measurements on a wider range of LTMOs including Lix(Ni,Fe)yCo1-yO2 suggest that 5% substitution is sufficient to induce the kinetic limitation and that the effect is not limited to Ni substitution.more » In this paper, we outline how, in addition to a reduction in the number of Li vacancies and shrinkage of the Li-layer size, the intrinsic charge storage mechanism (two-phase vs solid-solution) and localization of charge give rise to additional kinetic barriers in NCA and nonmetallic LTMOs in general.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [2]; ORCiD logo [2];  [3];  [4]; ORCiD logo [2]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Stony Brook Univ., NY (United States)
  2. Univ. of Cambridge (United Kingdom)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Stony Brook Univ., NY (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1660430
Grant/Contract Number:  
AC02-06CH11357; SC0012583
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 142; Journal Issue: 15; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Layered Oxide; Battery

Citation Formats

Grenier, Antonin, Reeves, Philip J., Liu, Hao, Seymour, Ieuan D., Märker, Katharina, Wiaderek, Kamila M., Chupas, Peter J., Grey, Clare P., and Chapman, Karena W. Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes. United States: N. p., 2020. Web. doi:10.1021/jacs.9b13551.
Grenier, Antonin, Reeves, Philip J., Liu, Hao, Seymour, Ieuan D., Märker, Katharina, Wiaderek, Kamila M., Chupas, Peter J., Grey, Clare P., & Chapman, Karena W. Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes. United States. https://doi.org/10.1021/jacs.9b13551
Grenier, Antonin, Reeves, Philip J., Liu, Hao, Seymour, Ieuan D., Märker, Katharina, Wiaderek, Kamila M., Chupas, Peter J., Grey, Clare P., and Chapman, Karena W. Sat . "Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes". United States. https://doi.org/10.1021/jacs.9b13551. https://www.osti.gov/servlets/purl/1660430.
@article{osti_1660430,
title = {Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes},
author = {Grenier, Antonin and Reeves, Philip J. and Liu, Hao and Seymour, Ieuan D. and Märker, Katharina and Wiaderek, Kamila M. and Chupas, Peter J. and Grey, Clare P. and Chapman, Karena W.},
abstractNote = {Substituted Li-layered transition-metal oxide (LTMO) electrodes such as LixNiy MnzCo1-y-zO2 (NMC) and LixNiyCo1-y-zAlzO2 (NCA) show reduced first cycle Coulombic efficiency (90-87% under standard cycling conditions) in comparison with the archetypal LixCoO2 (LCO; similar to 98% efficiency). Focusing on LixNi0.8Co0.15Al0.0.5O2 as a model compound, we use operando synchrotron X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopy to demonstrate that the apparent first-cycle capacity loss is a kinetic effect linked to limited Li mobility at x > 0.88, with near full capacity recovered during a potentiostatic hold following the galvanostatic charge- discharge cycle. This kinetic capacity loss, unlike many capacity losses in LTMOs, is independent of the cutoff voltage during delithiation and it is a reversible process. The kinetic limitation manifests not only as the kinetic capacity loss during discharge but as a subtle bimodal compositional distribution early in charge and, also, a dramatic increase of the charge-discharge voltage hysteresis at x > 0.88. 7Li NMR measurements indicate that the kinetic limitation reflects limited Li transport at x > 0.86. Electrochemical measurements on a wider range of LTMOs including Lix(Ni,Fe)yCo1-yO2 suggest that 5% substitution is sufficient to induce the kinetic limitation and that the effect is not limited to Ni substitution. In this paper, we outline how, in addition to a reduction in the number of Li vacancies and shrinkage of the Li-layer size, the intrinsic charge storage mechanism (two-phase vs solid-solution) and localization of charge give rise to additional kinetic barriers in NCA and nonmetallic LTMOs in general.},
doi = {10.1021/jacs.9b13551},
journal = {Journal of the American Chemical Society},
number = 15,
volume = 142,
place = {United States},
year = {Sat Mar 21 00:00:00 EDT 2020},
month = {Sat Mar 21 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties
journal, September 1999


On the behavior of the LixNiO2 system: an electrochemical and structural overview
journal, September 1997


Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries
journal, July 2008


Switch of the Charge Storage Mechanism of Li x Ni 0.80 Co 0.15 Al 0.05 O 2 at Overdischarge Conditions
journal, March 2018


The truth about the 1st cycle Coulombic efficiency of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) cathodes
journal, January 2016

  • Kasnatscheew, J.; Evertz, M.; Streipert, B.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 5
  • DOI: 10.1039/C5CP07718D

What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries?
journal, July 2019


Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes
journal, May 2017


The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

Best Practices for Operando Battery Experiments: Influences of X-ray Experiment Design on Observed Electrochemical Reactivity
journal, May 2015

  • Borkiewicz, Olaf J.; Wiaderek, Kamila M.; Chupas, Peter J.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 11
  • DOI: 10.1021/acs.jpclett.5b00891

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


Sensitivity and Limitations of Structures from X-ray and Neutron-Based Diffraction Analyses of Transition Metal Oxide Lithium-Battery Electrodes
journal, January 2017

  • Liu, Hao; Liu, Haodong; Lapidus, Saul H.
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.0271709jes

Phenomenological model of anisotropic peak broadening in powder diffraction
journal, April 1999


Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
journal, August 2017


Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries
journal, January 2012

  • Rosina, Kenneth J.; Jiang, Meng; Zeng, Dongli
  • Journal of Materials Chemistry, Vol. 22, Issue 38
  • DOI: 10.1039/c2jm34114j

Isotropic High Field NMR Spectra of Li-Ion Battery Materials with Anisotropy >1 MHz
journal, January 2012

  • Hung, Ivan; Zhou, Lina; Pourpoint, Frédérique
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja209600m

Temperature Dependence of 207 Pb MAS Spectra of Solid Lead Nitrate. An Accurate, Sensitive Thermometer for Variable-Temperature MAS
journal, October 1995

  • Bielecki, Anthony; Burum, Douglas P.
  • Journal of Magnetic Resonance, Series A, Vol. 116, Issue 2
  • DOI: 10.1006/jmra.1995.0010

Factors affecting cycling life of LiNi 0.8 Co 0.15 Al 0.05 O 2 for lithium-ion batteries
journal, January 2016

  • Makimura, Yoshinari; Sasaki, Tsuyoshi; Nonaka, Takamasa
  • Journal of Materials Chemistry A, Vol. 4, Issue 21
  • DOI: 10.1039/C6TA01251E

Surface degradation of Li1–xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations
journal, June 2016

  • Sallis, S.; Pereira, N.; Mukherjee, P.
  • Applied Physics Letters, Vol. 108, Issue 26
  • DOI: 10.1063/1.4954800

Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 – a model compound for classical layered intercalation
journal, January 2018

  • Liu, Haodong; Liu, Hao; Seymour, Ieuan D.
  • Journal of Materials Chemistry A, Vol. 6, Issue 9
  • DOI: 10.1039/C7TA10829J

R factors in Rietveld analysis: How good is good enough?
journal, March 2006


van der Waals Interactions in Layered Lithium Cobalt Oxides
journal, August 2015

  • Aykol, Muratahan; Kim, Soo; Wolverton, C.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 33
  • DOI: 10.1021/acs.jpcc.5b06240

Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation
journal, October 2017

  • Kondrakov, Aleksandr O.; Geßwein, Holger; Galdina, Kristina
  • The Journal of Physical Chemistry C, Vol. 121, Issue 44
  • DOI: 10.1021/acs.jpcc.7b06598

Editors' Choice—Growth of Ambient Induced Surface Impurity Species on Layered Positive Electrode Materials and Impact on Electrochemical Performance
journal, January 2017

  • Faenza, Nicholas V.; Bruce, Lejandro; Lebens-Higgins, Zachary W.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0921714jes

Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

Evolution of Structure and Lithium Dynamics in LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811) Cathodes during Electrochemical Cycling
journal, March 2019


Rapid computation of magnetic resonance line shapes for exchange among many sites
journal, October 1967


Probing Dynamic Processes in Lithium-Ion Batteries by In Situ NMR Spectroscopy: Application to Li 1.08 Mn 1.92 O 4 Electrodes
journal, October 2015

  • Zhou, Lina; Leskes, Michal; Liu, Tao
  • Angewandte Chemie International Edition, Vol. 54, Issue 49
  • DOI: 10.1002/anie.201507632

Characterization of Electronic and Ionic Transport in Li 1- x Ni 0 . 8 Co 0.15 Al 0.05 O 2 (NCA)
journal, January 2015

  • Amin, Ruhul; Ravnsbæk, Dorthe Bomholdt; Chiang, Yet-Ming
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0171507jes

Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1−2yO2
journal, December 2014


High Rate Capability of Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 Electrode for Li-Ion Batteries
journal, January 2012

  • Wu, Shao-Ling; Zhang, Wei; Song, Xiangyun
  • Journal of The Electrochemical Society, Vol. 159, Issue 4
  • DOI: 10.1149/2.062204jes

On the LixNi0.8Co0.2O2System
journal, February 1998


Electronic and Electrochemical Properties of Li x Ni 1- y Co y O 2 Cathodes Studied by Impedance Spectroscopy
journal, May 2001

  • Nobili, F.; Croce, F.; Scrosati, B.
  • Chemistry of Materials, Vol. 13, Issue 5
  • DOI: 10.1021/cm000600x

Lithium Diffusion in Layered Li[sub x]CoO[sub 2]
journal, January 1999

  • Van der Ven, A.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 7
  • DOI: 10.1149/1.1391130

Lithium diffusion mechanisms in layered intercalation compounds
journal, July 2001


Kinetics Tuning of Li-Ion Diffusion in Layered Li(Ni x Mn y Co z )O 2
journal, June 2015

  • Wei, Yi; Zheng, Jiaxin; Cui, Suihan
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04040

Factors that affect Li mobility in layered lithium transition metal oxides
journal, September 2006


On “Really” Stoichiometric LiCoO[sub 2]
journal, January 2008

  • Ménétrier, M.; Carlier, D.; Blangero, M.
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 11
  • DOI: 10.1149/1.2968953

The Influence of Ni Doping on the Structure and Electrochemical Properties of LiCoO 2 Materials
journal, January 2018

  • Jin, Yahui; Xu, Shiguo; Li, Zhitao
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.0401810jes

Phase Evolution and Degradation Modes of Rm Li x Ni 1– yz Co y Al z O 2 Electrodes Cycled Near Complete Delithiation
journal, October 2018


Electrochemical Properties of Hydrothermally Obtained LiCo[sub 1−x]Fe[sub x]O[sub 2] as a Positive Electrode Material for Rechargeable Lithium Batteries
journal, January 2000

  • Kobayashi, Hironori; Shigemura, Hikari; Tabuchi, Mitsuharu
  • Journal of The Electrochemical Society, Vol. 147, Issue 3
  • DOI: 10.1149/1.1393298

Synthesis of High-Voltage (4.5 V) Cycling Doped LiCoO 2 for Use in Lithium Rechargeable Cells
journal, December 2003

  • Zou, Meijing; Yoshio, Masaki; Gopukumar, S.
  • Chemistry of Materials, Vol. 15, Issue 25
  • DOI: 10.1021/cm0347032

Comparison of Single Crystal and Polycrystalline LiNi 0.5 Mn 0.3 Co 0.2 O 2 Positive Electrode Materials for High Voltage Li-Ion Cells
journal, January 2017

  • Li, Jing; Cameron, Andrew R.; Li, Hongyang
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0991707jes

7Li MAS NMR study of electrochemically deintercalated LixNi0.30Co0.70O2 phases: evidence of electronic and ionic mobility, and redox processes
journal, January 2001

  • Carlier, Dany; Ménétrier, Michel; Delmas, Claude
  • Journal of Materials Chemistry, Vol. 11, Issue 2
  • DOI: 10.1039/b006179o

Redox processes in LixNi1−yCoyO2 cobalt-rich phases
journal, January 1997

  • Saadoune, Ismael; Ménétrier, Michel; Delmas, Claude
  • Journal of Materials Chemistry, Vol. 7, Issue 12
  • DOI: 10.1039/a703368k

The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study
journal, January 1999

  • Ménétrier, Michel; Saadoune, Ismael; Levasseur, Stéphane
  • Journal of Materials Chemistry, Vol. 9, Issue 5
  • DOI: 10.1039/a900016j

Investigation of the Structural Changes in Li[NiyMnyCo(1−2y)]O2(y = 0.05) upon Electrochemical Lithium Deintercalation
journal, February 2010

  • Zeng, Dongli; Cabana, Jordi; Yoon, Won-Sub
  • Chemistry of Materials, Vol. 22, Issue 3, p. 1209-1219
  • DOI: 10.1021/cm902721w

Jahn-Teller mediated ordering in layered Li x M O 2 compounds
journal, March 2001

  • Arroyo y. de Dompablo, M. E.; Marianetti, C.; Van der Ven, A.
  • Physical Review B, Vol. 63, Issue 14
  • DOI: 10.1103/PhysRevB.63.144107

Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
journal, December 2017


Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018