skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 15, 2021

Title: Ion diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure

Abstract

Conductive polymers are promising materials as active elements for energy storage and conversion devices due to mixed ion–electron conduction. The ion diffusion coefficient is a relative measure of the efficacy of ion transport, allowing for comparison between materials and electrochemical conditions. In this work, diffusion coefficients of hexafluorophosphate (PF6–) counterions in poly(3-alkylthiophene) (P3AT) materials are measured as a function of both side-chain length and microstructure using electrochemical impedance spectroscopy (EIS). For semi-crystalline films, the diffusion coefficient is found to be anomalous and nearly independent of applied electrochemical potential. Here, the anomalous behavior of diffusion indicates that spin casting yields compact films with an enthalpic barrier to ion transport, attributed to ionic trapping. Diffusion coefficient values ~10–11 cm2 s–1 were measured for all films, indicating interchain spacing, in the absence of strong intermolecular interactions with the electrolyte, is not a viable design strategy to control ion transport. For the prototypical system of poly(3-hexylthiophene), we observe almost no potential dependence in ion transport for regioregular and regiorandom films of comparable molecular weight, with both exhibiting anomalous diffusion. Alternatively, changing the microstructure of poly(3-hexylthiophene) to a mostly amorphous, ion-imprinted structure yields ~500× increase in the diffusion coefficient to ~2 × 10–8 cm2 s–1more » at 0.8 V vs. Ag/Ag+ with behavior closer to ordinary diffusion. Collectively, these results indicate new insight into ion transport in conductive polymers, where ionic trapping effects can be mitigated through electrodeposition protocols over post-synthesis processing (i.e. spin coating).« less

Authors:
 [1]; ORCiD logo [1]
  1. University of Arizona, Tucson, AZ (United States)
Publication Date:
Research Org.:
Univ. of Arizona, Tucson, AZ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1660398
Alternate Identifier(s):
OSTI ID: 1660481
Grant/Contract Number:  
SC0020208; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry C
Additional Journal Information:
Related Information: http://www.rsc.org/suppdata/d0/tc/d0tc03690k/d0tc03690k1.pdf; Journal ID: ISSN 2050-7526
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 25 ENERGY STORAGE; 36 MATERIALS SCIENCE; Charge transport; anomalous diffusion; interchain spacings; conductive polymers

Citation Formats

Harris, Jonathan K., and Ratcliff, Erin L. Ion diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure. United States: N. p., 2020. Web. https://doi.org/10.1039/d0tc03690k.
Harris, Jonathan K., & Ratcliff, Erin L. Ion diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure. United States. https://doi.org/10.1039/d0tc03690k
Harris, Jonathan K., and Ratcliff, Erin L. Tue . "Ion diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure". United States. https://doi.org/10.1039/d0tc03690k.
@article{osti_1660398,
title = {Ion diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure},
author = {Harris, Jonathan K. and Ratcliff, Erin L.},
abstractNote = {Conductive polymers are promising materials as active elements for energy storage and conversion devices due to mixed ion–electron conduction. The ion diffusion coefficient is a relative measure of the efficacy of ion transport, allowing for comparison between materials and electrochemical conditions. In this work, diffusion coefficients of hexafluorophosphate (PF6–) counterions in poly(3-alkylthiophene) (P3AT) materials are measured as a function of both side-chain length and microstructure using electrochemical impedance spectroscopy (EIS). For semi-crystalline films, the diffusion coefficient is found to be anomalous and nearly independent of applied electrochemical potential. Here, the anomalous behavior of diffusion indicates that spin casting yields compact films with an enthalpic barrier to ion transport, attributed to ionic trapping. Diffusion coefficient values ~10–11 cm2 s–1 were measured for all films, indicating interchain spacing, in the absence of strong intermolecular interactions with the electrolyte, is not a viable design strategy to control ion transport. For the prototypical system of poly(3-hexylthiophene), we observe almost no potential dependence in ion transport for regioregular and regiorandom films of comparable molecular weight, with both exhibiting anomalous diffusion. Alternatively, changing the microstructure of poly(3-hexylthiophene) to a mostly amorphous, ion-imprinted structure yields ~500× increase in the diffusion coefficient to ~2 × 10–8 cm2 s–1 at 0.8 V vs. Ag/Ag+ with behavior closer to ordinary diffusion. Collectively, these results indicate new insight into ion transport in conductive polymers, where ionic trapping effects can be mitigated through electrodeposition protocols over post-synthesis processing (i.e. spin coating).},
doi = {10.1039/d0tc03690k},
journal = {Journal of Materials Chemistry C},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 15, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles
journal, February 2020


Hybrid organic–inorganic H 2 -evolving photocathodes: understanding the route towards high performance organic photoelectrochemical water splitting
journal, January 2016

  • Fumagalli, Francesco; Bellani, Sebastiano; Schreier, Marcel
  • Journal of Materials Chemistry A, Vol. 4, Issue 6
  • DOI: 10.1039/C5TA09330A

Polymer-Based Photocatalytic Hydrogen Generation
journal, May 2012

  • Lanzarini, Erica; Antognazza, Maria Rosa; Biso, Maurizio
  • The Journal of Physical Chemistry C, Vol. 116, Issue 20
  • DOI: 10.1021/jp212107f

Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water
journal, January 2016

  • Sprick, Reiner Sebastian; Bonillo, Baltasar; Sachs, Michael
  • Chemical Communications, Vol. 52, Issue 65
  • DOI: 10.1039/C6CC03536A

Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution
journal, November 2016

  • Zhang, Guigang; Lan, Zhi-An; Wang, Xinchen
  • Angewandte Chemie International Edition, Vol. 55, Issue 51
  • DOI: 10.1002/anie.201607375

An aqueous, polymer-based redox-flow battery using non-corrosive, safe and low-cost materials
journal, October 2015

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 527, Issue 7576, p. 78-81
  • DOI: 10.1038/nature15746

All-PEGylated redox-active metal-free organic molecules in non-aqueous redox flow battery
journal, January 2020

  • Chai, Jingchao; Lashgari, Amir; Wang, Xiao
  • Journal of Materials Chemistry A, Vol. 8, Issue 31
  • DOI: 10.1039/D0TA02303E

Enhanced Cyclability of Lithium–Sulfur Batteries by a Polymer Acid-Doped Polypyrrole Mixed Ionic–Electronic Conductor
journal, August 2012

  • Fu, Yongzhu; Manthiram, Arumugam
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm301661y

Boosting the capacity of all-organic paper supercapacitors using wood derivatives
journal, January 2018

  • Edberg, Jesper; Inganäs, Olle; Engquist, Isak
  • Journal of Materials Chemistry A, Vol. 6, Issue 1
  • DOI: 10.1039/C7TA06810G

Microstructure-dependent electrochemical properties of chemical-vapor deposited poly(3,4-ethylenedioxythiophene) (PEDOT) films
journal, July 2019


Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite
journal, January 2007


Electrochromic organic and polymeric materials for display applications
journal, January 2006


Illuminating the electrolyte in light-emitting electrochemical cells
journal, January 2016

  • Mindemark, J.; Edman, L.
  • Journal of Materials Chemistry C, Vol. 4, Issue 3
  • DOI: 10.1039/C5TC03429A

A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell
journal, March 2015


Polymer Light-Emitting Electrochemical Cells
journal, August 1995


Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes
journal, January 2001

  • Irvin, Jennifer A.; Schwendeman, Irina; Lee, Youngkwan
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 39, Issue 13
  • DOI: 10.1002/pola.1193

Role of the Anion on the Transport and Structure of Organic Mixed Conductors
journal, December 2018

  • Cendra, Camila; Giovannitti, Alexander; Savva, Achilleas
  • Advanced Functional Materials, Vol. 29, Issue 5
  • DOI: 10.1002/adfm.201807034

Polarons and bipolarons on a conducting polymer in solution
journal, September 1987

  • Nowak, M.; Rughooputh, S. D. D. V.; Hotta, S.
  • Macromolecules, Vol. 20, Issue 5
  • DOI: 10.1021/ma00171a013

Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors
journal, June 2017

  • Giridharagopal, R.; Flagg, L. Q.; Harrison, J. S.
  • Nature Materials, Vol. 16, Issue 7
  • DOI: 10.1038/nmat4918

Anion-Dependent Doping and Charge Transport in Organic Electrochemical Transistors
journal, July 2018


Influence of Water on the Performance of Organic Electrochemical Transistors
journal, January 2019


Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors
journal, February 2019

  • Flagg, Lucas Q.; Bischak, Connor G.; Onorato, Jonathan W.
  • Journal of the American Chemical Society, Vol. 141, Issue 10
  • DOI: 10.1021/jacs.8b12640

Efficient blue-green and white light-emitting electrochemical cells based on poly[9,9-bis(3,6-dioxaheptyl)-fluorene-2,7-diyl]
journal, April 1997

  • Yang, Yang; Pei, Qibing
  • Journal of Applied Physics, Vol. 81, Issue 7
  • DOI: 10.1063/1.364313

Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability
journal, September 2018


Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes
journal, June 2018


Ionic conductivity in crystalline polymer electrolytes
journal, August 2001

  • Gadjourova, Zlatka; Andreev, Yuri G.; Tunstall, David P.
  • Nature, Vol. 412, Issue 6846
  • DOI: 10.1038/35087538

Intersystem Subpopulation Charge Transfer and Conformational Relaxation Preceding in Situ Conductivity in Electrochemically Doped Poly(3-hexylthiophene) Electrodes
journal, December 2018


Tuning of the aqueous electroactivity of substituted poly(thiophene)s by ether groups
journal, June 1990


Electrochemical Impedance Analysis of Polyaniline Films on Electrodes
journal, January 1987

  • Rubinstein, Israel
  • Journal of The Electrochemical Society, Vol. 134, Issue 12
  • DOI: 10.1149/1.2100343

Capacitive Charge and Noncapacitive Charge in Conducting Polymer Electrodes
journal, January 1987

  • Tanguy, J.
  • Journal of The Electrochemical Society, Vol. 134, Issue 4
  • DOI: 10.1149/1.2100575

Structural Effects of Gating Poly(3-hexylthiophene) through an Ionic Liquid
journal, July 2017

  • Guardado, Jesus O.; Salleo, Alberto
  • Advanced Functional Materials, Vol. 27, Issue 32
  • DOI: 10.1002/adfm.201701791

X-Ray Scattering Reveals Ion-Induced Microstructural Changes During Electrochemical Gating of Poly(3-Hexylthiophene)
journal, September 2018

  • Thomas, Elayne M.; Brady, Michael A.; Nakayama, Hidenori
  • Advanced Functional Materials, Vol. 28, Issue 44
  • DOI: 10.1002/adfm.201803687

Electrodeposited, “Textured” Poly(3-hexyl-thiophene) (e-P3HT) Films for Photovoltaic Applications
journal, September 2008

  • Ratcliff, Erin L.; Jenkins, Judith L.; Nebesny, Ken
  • Chemistry of Materials, Vol. 20, Issue 18
  • DOI: 10.1021/cm8008122

Mixing Behavior in Small Molecule:Fullerene Organic Photovoltaics
journal, March 2017


Interaction of side-chains in poly(3-alkylthiophene) lattices
journal, January 1996

  • Corish, J.; Morton-Blake, D. A.; Bénière, F.
  • J. Chem. Soc., Faraday Trans., Vol. 92, Issue 4
  • DOI: 10.1039/FT9969200671

Controlling the Kinetics of Charge Transfer at Conductive Polymer/Liquid Interfaces through Microstructure
journal, August 2018

  • Neelamraju, Bharati; Rudolph, Melanie; Ratcliff, Erin L.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 37
  • DOI: 10.1021/acs.jpcc.8b06861

Systematic electrochemical oxidative doping of P3HT to probe interfacial charge transfer across polymer–fullerene interfaces
journal, January 2014

  • Jenkins, Judith L.; Lee, Paul A.; Nebesny, Kenneth W.
  • J. Mater. Chem. A, Vol. 2, Issue 45
  • DOI: 10.1039/C4TA04319G

Effects of steric factors on the electrosynthesis and properties of conducting poly(3-alkylthiophenes)
journal, December 1987

  • Roncali, J.; Garreau, R.; Yassar, A.
  • The Journal of Physical Chemistry, Vol. 91, Issue 27
  • DOI: 10.1021/j100311a030

The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells
journal, April 2005


Diffusion-migration impedances for finite, one-dimensional transport in thin-layer and membrane cells
journal, March 1987

  • Buck, Richard P.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 219, Issue 1-2
  • DOI: 10.1016/0022-0728(87)85030-1

Diffusion Coefficients in Swelling Polypyrrole:  ESCR and Cottrell Models
journal, February 2005

  • Suárez, Iván J.; Otero, Toribio F.; Márquez, Manuel
  • The Journal of Physical Chemistry B, Vol. 109, Issue 5
  • DOI: 10.1021/jp046051q

Anomalous transport effects in the impedance of porous film electrodes
journal, September 1999

  • Bisquert, Juan; Garcia-Belmonte, Germà; Fabregat-Santiago, Francisco
  • Electrochemistry Communications, Vol. 1, Issue 9
  • DOI: 10.1016/S1388-2481(99)00084-3

Theory of the electrochemical impedance of anomalous diffusion
journal, February 2001


Modelling the impedance properties of electrodes coated with electroactive polymer films
journal, January 1994

  • Vorotyntsev, M. A.; Daikhin, L. I.; Levi, M. D.
  • Journal of Electroanalytical Chemistry, Vol. 364, Issue 1-2
  • DOI: 10.1016/0022-0728(93)02957-J

Structural origin of gap states in semicrystalline polymers and the implications for charge transport
journal, March 2011


Relation between Microstructure and Charge Transport in Polymers of Different Regioregularity
journal, September 2011

  • McMahon, David P.; Cheung, David L.; Goris, Ludwig
  • The Journal of Physical Chemistry C, Vol. 115, Issue 39
  • DOI: 10.1021/jp207026s

Intrinsic hole mobility and trapping in a regioregular poly(thiophene)
journal, September 2004


Electrochemical impedance analysis of the redox switching hysteresis of poly(3,4-ethylenedioxythiophene) films
journal, March 2005

  • Hass, Roland; García-Cañadas, Jorge; Garcia-Belmonte, Germà
  • Journal of Electroanalytical Chemistry, Vol. 577, Issue 1
  • DOI: 10.1016/j.jelechem.2004.11.020

Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes
journal, October 2017


Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance
journal, July 2020


A Reversible Structural Phase Transition by Electrochemically-Driven Ion Injection into a Conjugated Polymer
journal, March 2020

  • Bischak, Connor G.; Flagg, Lucas Q.; Yan, Kangrong
  • Journal of the American Chemical Society, Vol. 142, Issue 16
  • DOI: 10.1021/jacs.9b12769

An Explanation of Anomalous Diffusion Patterns Observed in Electroactive Materials by Impedance Methods
journal, March 2003

  • Bisquert, Juan; Garcia-Belmonte, Germà; Pitarch, Ángeles
  • ChemPhysChem, Vol. 4, Issue 3
  • DOI: 10.1002/cphc.200390046

Work function control of hole-selective polymer/ITO anode contacts: an electrochemical doping study
journal, January 2010

  • Ratcliff, Erin L.; Lee, Paul A.; Armstrong, Neal R.
  • Journal of Materials Chemistry, Vol. 20, Issue 13
  • DOI: 10.1039/b923201j

Characteristics of Electrochemically Synthesized Polymer Electrodes: VI . Kinetics of the Process of Polypyrrole Oxidation
journal, December 1989

  • Panero, S.; Prosperi, P.; Passerini, S.
  • Journal of The Electrochemical Society, Vol. 136, Issue 12
  • DOI: 10.1149/1.2096539

Polypyrrole:  Diffusion Coefficients and Degradation by Overoxidation
journal, September 2004

  • Otero, Toribio F.; Márquez, Manuel; Suárez, Iván J.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 39
  • DOI: 10.1021/jp0490608