DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long interior carrier lifetime in selective-area InAs nanowires on silicon

Abstract

Catalyst-free, position-controlled indium arsenide (InAs) nanowires (NWs) of variable diameters were grown on Si (111) by selective-area epitaxy (SAE). Ultrafast pump-probe spectroscopy was conducted, from which carrier recombination mechanisms on the NW surface and interior were resolved and characterized. NWs grown using SAE demonstrated high optical quality, showing minority carrier lifetimes more than two-fold longer than that of the randomly-positioned (RP) NWs. The extracted SAE-InAs NW interior recombination lifetime was found to be as long as 7.2 ns , 13X longer than previous measurements on RP-NWs; and the surface recombination velocity 4154 cm · s - 1 . Transmission electron microscopy revealed a high density of stacking defects within the NWs, suggesting that interior recombination lifetime can be further increased by improving NW interior crystalline quality.

Authors:
ORCiD logo; ; ; ; ORCiD logo;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1660328
Alternate Identifier(s):
OSTI ID: 1797927
Grant/Contract Number:  
AC02-06CH11357; EPMD-1608714
Resource Type:
Published Article
Journal Name:
Optical Materials Express
Additional Journal Information:
Journal Name: Optical Materials Express Journal Volume: 10 Journal Issue: 10; Journal ID: ISSN 2159-3930
Publisher:
Optical Society of America
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Zhang, Kailing, Li, Xinxin, Walhof, Alexander C., Liu, Yuzi, Toor, Fatima, and Prineas, John P. Long interior carrier lifetime in selective-area InAs nanowires on silicon. United States: N. p., 2020. Web. doi:10.1364/OME.403531.
Zhang, Kailing, Li, Xinxin, Walhof, Alexander C., Liu, Yuzi, Toor, Fatima, & Prineas, John P. Long interior carrier lifetime in selective-area InAs nanowires on silicon. United States. https://doi.org/10.1364/OME.403531
Zhang, Kailing, Li, Xinxin, Walhof, Alexander C., Liu, Yuzi, Toor, Fatima, and Prineas, John P. Mon . "Long interior carrier lifetime in selective-area InAs nanowires on silicon". United States. https://doi.org/10.1364/OME.403531.
@article{osti_1660328,
title = {Long interior carrier lifetime in selective-area InAs nanowires on silicon},
author = {Zhang, Kailing and Li, Xinxin and Walhof, Alexander C. and Liu, Yuzi and Toor, Fatima and Prineas, John P.},
abstractNote = {Catalyst-free, position-controlled indium arsenide (InAs) nanowires (NWs) of variable diameters were grown on Si (111) by selective-area epitaxy (SAE). Ultrafast pump-probe spectroscopy was conducted, from which carrier recombination mechanisms on the NW surface and interior were resolved and characterized. NWs grown using SAE demonstrated high optical quality, showing minority carrier lifetimes more than two-fold longer than that of the randomly-positioned (RP) NWs. The extracted SAE-InAs NW interior recombination lifetime was found to be as long as 7.2 ns , 13X longer than previous measurements on RP-NWs; and the surface recombination velocity 4154 cm · s - 1 . Transmission electron microscopy revealed a high density of stacking defects within the NWs, suggesting that interior recombination lifetime can be further increased by improving NW interior crystalline quality.},
doi = {10.1364/OME.403531},
journal = {Optical Materials Express},
number = 10,
volume = 10,
place = {United States},
year = {Mon Sep 14 00:00:00 EDT 2020},
month = {Mon Sep 14 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1364/OME.403531

Save / Share:

Works referenced in this record:

Control of InAs Nanowire Growth Directions on Si
journal, October 2008

  • Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl802398j

Selective-area growth of III-V nanowires and their applications
journal, July 2011

  • Tomioka, Katsuhiro; Ikejiri, Keitaro; Tanaka, Tomotaka
  • Journal of Materials Research, Vol. 26, Issue 17
  • DOI: 10.1557/jmr.2011.103

Determination of the wavelength dependence of Auger recombination in long-wavelength quantum-well semiconductor lasers using hydrostatic pressure
journal, January 1997

  • Silver, M.; O'Reilly, E. P.; Adams, A. R.
  • IEEE Journal of Quantum Electronics, Vol. 33, Issue 9
  • DOI: 10.1109/3.622637

Auger recombination in low-band-gap n -type InGaAs
journal, November 2001

  • Metzger, W. K.; Wanlass, M. W.; Ellingson, R. J.
  • Applied Physics Letters, Vol. 79, Issue 20
  • DOI: 10.1063/1.1418032

High Electron Mobility InAs Nanowire Field-Effect Transistors
journal, February 2007


InAs Nanowire Transistors as Gas Sensor and the Response Mechanism
journal, December 2009

  • Du, Juan; Liang, Dong; Tang, Hao
  • Nano Letters, Vol. 9, Issue 12
  • DOI: 10.1021/nl902611f

Diameter-Dependent Electronic Transport Properties of Au-Catalyst/Ge-Nanowire Schottky Diodes
journal, March 2009


Crystal Phase-Dependent Nanophotonic Resonances in InAs Nanowire Arrays
journal, September 2014

  • Anttu, Nicklas; Lehmann, Sebastian; Storm, Kristian
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502306x

Carrier Recombination in the Base, Interior, and Surface of InAs/InAlAs Core–Shell Nanowires Grown on Silicon
journal, June 2019


Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications
journal, October 2007

  • Hu, Lu; Chen, Gang
  • Nano Letters, Vol. 7, Issue 11, p. 3249-3252
  • DOI: 10.1021/nl071018b

Contactless Optical Characterization of Carrier Dynamics in Free-Standing InAs-InAlAs Core–Shell Nanowires on Silicon
journal, January 2019


Selectivity Map for Molecular Beam Epitaxy of Advanced III–V Quantum Nanowire Networks
journal, December 2018


Quantum-confinement effects in InAs–InP core–shell nanowires
journal, June 2007


Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties
journal, March 2017


Minority carrier lifetime in InAs epilayers
journal, December 1974

  • Wieder, H. H.; Collins, D. A.
  • Applied Physics Letters, Vol. 25, Issue 12
  • DOI: 10.1063/1.1655384

Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires
journal, June 2011

  • Dan, Yaping; Seo, Kwanyong; Takei, Kuniharu
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl201179n

Position controlled nanowires for infrared single photon emission
journal, October 2010

  • Dorenbos, S. N.; Sasakura, H.; van Kouwen, M. P.
  • Applied Physics Letters, Vol. 97, Issue 17
  • DOI: 10.1063/1.3506499

Nature of germanium nanowire heteroepitaxy on silicon substrates
journal, July 2006

  • Jagannathan, Hemanth; Deal, Michael; Nishi, Yoshio
  • Journal of Applied Physics, Vol. 100, Issue 2
  • DOI: 10.1063/1.2219007

Influence of substrate orientation on the structural properties of GaAs nanowires in MOCVD
conference, January 2016

  • Muhammad, R.; Othaman, Z.; Wahab, Y.
  • High-Energy Spin Physics: 8th International Symposium, AIP Conference Proceedings
  • DOI: 10.1063/1.4945503

Absence of vapor-liquid-solid growth during molecular beam epitaxy of self-induced InAs nanowires on Si
journal, March 2011

  • Hertenberger, S.; Rudolph, D.; Bolte, S.
  • Applied Physics Letters, Vol. 98, Issue 12
  • DOI: 10.1063/1.3567496

Axial InAs(Sb) inserts in selective-area InAsP nanowires on InP for optoelectronics beyond 25 µm
journal, January 2018

  • Ren, Dingkun; Farrell, Alan C.; Huffaker, Diana L.
  • Optical Materials Express, Vol. 8, Issue 4
  • DOI: 10.1364/OME.8.001075

Predicted band structures of III-V semiconductors in the wurtzite phase
journal, April 2010


Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization
journal, November 2011


Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes
journal, November 2011

  • Takei, Kuniharu; Fang, Hui; Kumar, S. Bala
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl2030322

Zinc Blende and Wurtzite Crystal Phase Mixing and Transition in Indium Phosphide Nanowires
journal, October 2011

  • Ikejiri, Keitaro; Kitauchi, Yusuke; Tomioka, Katsuhiro
  • Nano Letters, Vol. 11, Issue 10
  • DOI: 10.1021/nl202365q

Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy
journal, December 2010

  • Hertenberger, S.; Rudolph, D.; Bichler, M.
  • Journal of Applied Physics, Vol. 108, Issue 11
  • DOI: 10.1063/1.3525610

Semiconductor nanowire devices
journal, October 2008


Indium arsenide nanowire field-effect transistors for pH and biological sensing
journal, May 2014

  • Upadhyay, S.; Frederiksen, R.; Lloret, N.
  • Applied Physics Letters, Vol. 104, Issue 20
  • DOI: 10.1063/1.4878659

Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates
journal, January 2010

  • Tanaka, Tomotaka; Tomioka, Katsuhiro; Hara, Shinjiroh
  • Applied Physics Express, Vol. 3, Issue 2
  • DOI: 10.1143/APEX.3.025003

Phase Perfection in Zinc Blende and Wurtzite III−V Nanowires Using Basic Growth Parameters
journal, March 2010

  • Joyce, Hannah J.; Wong-Leung, Jennifer; Gao, Qiang
  • Nano Letters, Vol. 10, Issue 3
  • DOI: 10.1021/nl903688v

Multi-Colour Nanowire Photonic Crystal Laser Pixels
journal, October 2013

  • Wright, Jeremy B.; Liu, Sheng; Wang, George T.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02982

In-plane selective area InSb–Al nanowire quantum networks
journal, March 2020


Mobility Enhancement by Sb-mediated Minimisation of Stacking Fault Density in InAs Nanowires Grown on Silicon
journal, February 2014

  • Sourribes, Marion J. L.; Isakov, Ivan; Panfilova, Marina
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl5001554

Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy
journal, April 2013


Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth Planes
journal, November 2018


Removal of Surface States and Recovery of Band-Edge Emission in InAs Nanowires through Surface Passivation
journal, June 2012

  • Sun, M. H.; Joyce, H. J.; Gao, Q.
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl300015w

Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors?
journal, October 2007


Carrier Transport in High Mobility InAs Nanowire Junctionless Transistors
journal, February 2015

  • Konar, Aniruddha; Mathew, John; Nayak, Kaushik
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl5043165

High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires
journal, May 2018


Enhanced Minority Carrier Lifetimes in GaAs/AlGaAs Core–Shell Nanowires through Shell Growth Optimization
journal, October 2013

  • Jiang, N.; Gao, Q.; Parkinson, P.
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl4023385

Ballistic InAs Nanowire Transistors
journal, January 2013

  • Chuang, Steven; Gao, Qun; Kapadia, Rehan
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3040674

Ten-Fold Enhancement of InAs Nanowire Photoluminescence Emission with an InP Passivation Layer
journal, May 2017


Electron transport in InAs nanowires and heterostructure nanowire devices
journal, September 2004

  • Thelander, C.; Björk, M. T.; Larsson, M. W.
  • Solid State Communications, Vol. 131, Issue 9-10
  • DOI: 10.1016/j.ssc.2004.05.033

Bandgap Energy of Wurtzite InAs Nanowires
journal, August 2016


Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays
journal, June 2015

  • Wook Shin, Hyun; Jun Lee, Sang; Gun Kim, Doo
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10764

Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy
journal, September 2012

  • Joyce, Hannah J.; Wong-Leung, Jennifer; Yong, Chaw-Keong
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl3026828

Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires
journal, March 2018


InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit
journal, January 2013


Long exciton lifetimes in stacking-fault-free wurtzite GaAs nanowires
journal, December 2014

  • Furthmeier, Stephan; Dirnberger, Florian; Hubmann, Joachim
  • Applied Physics Letters, Vol. 105, Issue 22
  • DOI: 10.1063/1.4903482