DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mapping Competitive Reduction upon Charging in LiNi0.8Co0.15Al0.05O2 Primary Particles

Abstract

Side reactions involving surface reduction play a critical role in the failure of LiNi0.8Co0.15Al0.05O2 to reach its theoretical capacity as a cathode material for Li-ion batteries. While macroscopic consequences are known, the underlying nanoscopic mechanisms are not fully elucidated. By coupling X-ray spectroscopy with several X-ray microscopy modalities, we have spatially resolved the extent of Ni oxidation at several states of charge and uncovered heterogeneity that is hidden when considering ensemble measurements alone. The use of morphologically controlled particles enabled high-resolution imaging of these materials, uncovering gradients of Ni oxidation states within individual primary particles. At high states of charge, these gradients revealed regions of possible oxygen deficiency extending deeper into the particle than previously observed. Surface-sensitive X-ray coupled scanning tunneling microscopy allows oxidation states to be measured at the material's surface, showing predominantly NiII in the first atomic layer and mixtures of NiII with NiIII/NiIV already appearing 1.5 nm into the particle. These results reveal the subtle interplay between irreversible surface transformations and the bulk reactions that ultimately define function, which will refine strategies of surface passivation that are key to overcoming current performance limitations.

Authors:
 [1];  [2];  [3];  [4];  [5]; ORCiD logo [6];  [6];  [7];  [8];  [2]; ORCiD logo [6]; ORCiD logo [4]; ORCiD logo [3]
  1. Univ. of Illinois, Chicago, IL (United States); Argonne National Lab. (ANL), Lemont IL (United States). Advanced Photon Source (APS)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  3. Univ. of Illinois, Chicago, IL (United States)
  4. Binghamton Univ., NY (United States)
  5. Binghamton Univ., NY (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  6. Rutgers Univ., New Brunswick, NJ (United States)
  7. Argonne National Lab. (ANL), Lemont, IL (United States). Center for Nanoscale Materials
  8. Argonne National Lab. (ANL), Lemont, IL (United States). Advanced Photon Source (APS)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and Center for Nanoscale Materials (CNM); Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES); Binghamton Univ., NY (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1660267
Grant/Contract Number:  
AC02-06CH11357; SC0012583; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 14; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; X-rays; Layers; Nanoparticles; Energy; Materials

Citation Formats

Wolfman, Mark, Yu, Young-Sang, May, Brian M., Lebens-Higgins, Zachary W., Sallis, Shawn, Faenza, Nicholas V., Pereira, Nathalie, Shirato, Nozomi, Rose, Volker, Shapiro, David A., Amatucci, Glenn G., Piper, Louis F. J., and Cabana, Jordi. Mapping Competitive Reduction upon Charging in LiNi0.8Co0.15Al0.05O2 Primary Particles. United States: N. p., 2020. Web. doi:10.1021/acs.chemmater.0c01986.
Wolfman, Mark, Yu, Young-Sang, May, Brian M., Lebens-Higgins, Zachary W., Sallis, Shawn, Faenza, Nicholas V., Pereira, Nathalie, Shirato, Nozomi, Rose, Volker, Shapiro, David A., Amatucci, Glenn G., Piper, Louis F. J., & Cabana, Jordi. Mapping Competitive Reduction upon Charging in LiNi0.8Co0.15Al0.05O2 Primary Particles. United States. https://doi.org/10.1021/acs.chemmater.0c01986
Wolfman, Mark, Yu, Young-Sang, May, Brian M., Lebens-Higgins, Zachary W., Sallis, Shawn, Faenza, Nicholas V., Pereira, Nathalie, Shirato, Nozomi, Rose, Volker, Shapiro, David A., Amatucci, Glenn G., Piper, Louis F. J., and Cabana, Jordi. Fri . "Mapping Competitive Reduction upon Charging in LiNi0.8Co0.15Al0.05O2 Primary Particles". United States. https://doi.org/10.1021/acs.chemmater.0c01986. https://www.osti.gov/servlets/purl/1660267.
@article{osti_1660267,
title = {Mapping Competitive Reduction upon Charging in LiNi0.8Co0.15Al0.05O2 Primary Particles},
author = {Wolfman, Mark and Yu, Young-Sang and May, Brian M. and Lebens-Higgins, Zachary W. and Sallis, Shawn and Faenza, Nicholas V. and Pereira, Nathalie and Shirato, Nozomi and Rose, Volker and Shapiro, David A. and Amatucci, Glenn G. and Piper, Louis F. J. and Cabana, Jordi},
abstractNote = {Side reactions involving surface reduction play a critical role in the failure of LiNi0.8Co0.15Al0.05O2 to reach its theoretical capacity as a cathode material for Li-ion batteries. While macroscopic consequences are known, the underlying nanoscopic mechanisms are not fully elucidated. By coupling X-ray spectroscopy with several X-ray microscopy modalities, we have spatially resolved the extent of Ni oxidation at several states of charge and uncovered heterogeneity that is hidden when considering ensemble measurements alone. The use of morphologically controlled particles enabled high-resolution imaging of these materials, uncovering gradients of Ni oxidation states within individual primary particles. At high states of charge, these gradients revealed regions of possible oxygen deficiency extending deeper into the particle than previously observed. Surface-sensitive X-ray coupled scanning tunneling microscopy allows oxidation states to be measured at the material's surface, showing predominantly NiII in the first atomic layer and mixtures of NiII with NiIII/NiIV already appearing 1.5 nm into the particle. These results reveal the subtle interplay between irreversible surface transformations and the bulk reactions that ultimately define function, which will refine strategies of surface passivation that are key to overcoming current performance limitations.},
doi = {10.1021/acs.chemmater.0c01986},
journal = {Chemistry of Materials},
number = 14,
volume = 32,
place = {United States},
year = {Fri Jun 19 00:00:00 EDT 2020},
month = {Fri Jun 19 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li 1 - x Co 1/ 3 Ni 1/3 Mn 1/3 O 2 ( x = 0 → 1)
journal, April 2006

  • Yin, S. -C.; Rho, Y. -H.; Swainson, I.
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm0511769

Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
journal, July 2017

  • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201602888

Surface degradation of Li1–xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations
journal, June 2016

  • Sallis, S.; Pereira, N.; Mukherjee, P.
  • Applied Physics Letters, Vol. 108, Issue 26
  • DOI: 10.1063/1.4954800

Unraveling the Degradation Process of LiNi 0.8 Co 0.15 Al 0.05 O 2 Electrodes in Commercial Lithium Ion Batteries by Electronic Structure Investigations
journal, August 2015

  • Kleiner, Karin; Melke, Julia; Merz, Michael
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 35
  • DOI: 10.1021/acsami.5b03191

Surface-Sensitive X-Ray Absorption Study on LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathode Material for Lithium-Ion Batteries
journal, January 2007

  • Nonaka, T.; Okuda, C.; Seno, Y.
  • Journal of The Electrochemical Society, Vol. 154, Issue 4
  • DOI: 10.1149/1.2472557

Atomic Insight into the Layered/Spinel Phase Transformation in Charged LiNi 0.80 Co 0.15 Al 0.05 O 2 Cathode Particles
journal, January 2017

  • Zhang, Hanlei; Karki, Khim; Huang, Yiqing
  • The Journal of Physical Chemistry C, Vol. 121, Issue 3
  • DOI: 10.1021/acs.jpcc.6b10220

First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials
journal, September 2017


Investigating Local Degradation and Thermal Stability of Charged Nickel-Based Cathode Materials through Real-Time Electron Microscopy
journal, August 2014

  • Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 17
  • DOI: 10.1021/am503278f

Contribution of the Structural Changes of LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathodes on the Exothermic Reactions in Li-Ion Cells
journal, January 2006

  • Bang, Hyun Joo; Joachin, Humberto; Yang, Hui
  • Journal of The Electrochemical Society, Vol. 153, Issue 4
  • DOI: 10.1149/1.2171828

Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode Materials
journal, January 2013

  • Bak, Seong-Min; Nam, Kyung-Wan; Chang, Wonyoung
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303096e

Facet-Dependent Rock-Salt Reconstruction on the Surface of Layered Oxide Cathodes
journal, January 2018


Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Ni and Co Segregations on Selective Surface Facets and Rational Design of Layered Lithium Transition-Metal Oxide Cathodes
journal, February 2016

  • Yan, Pengfei; Zheng, Jianming; Zheng, Jiaxin
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201502455

Single-crystal based studies for correlating the properties and high-voltage performance of Li[Ni x Mn y Co 1−x−y ]O 2 cathodes
journal, January 2019

  • Zhu, Jian; Chen, Guoying
  • Journal of Materials Chemistry A, Vol. 7, Issue 10
  • DOI: 10.1039/C8TA10329A

Revealing Anisotropic Spinel Formation on Pristine Li- and Mn-Rich Layered Oxide Surface and Its Impact on Cathode Performance
journal, January 2017

  • Kuppan, Saravanan; Shukla, Alpesh Khushalchand; Membreno, Daniel
  • Advanced Energy Materials, Vol. 7, Issue 11
  • DOI: 10.1002/aenm.201602010

Investigation of Changes in the Surface Structure of Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode Materials Induced by the Initial Charge
journal, December 2013

  • Hwang, Sooyeon; Chang, Wonyoung; Kim, Seung Min
  • Chemistry of Materials, Vol. 26, Issue 2
  • DOI: 10.1021/cm403332s

Microstructural Changes in LiNi0.8Co0.15Al0.05O2 Positive Electrode Material during the First Cycle
journal, January 2011

  • Zheng, Shijian; Huang, Rong; Makimura, Yoshinari
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3544843

Hidden Subsurface Reconstruction and Its Atomic Origins in Layered Oxide Cathodes
journal, March 2020


Capacity-Fading Mechanisms of LiNiO[sub 2]-Based Lithium-Ion Batteries
journal, January 2009

  • Sasaki, Tsuyoshi; Nonaka, Takamasa; Oka, Hideaki
  • Journal of The Electrochemical Society, Vol. 156, Issue 4
  • DOI: 10.1149/1.3076136

Determination of the mechanism and extent of surface degradation in Ni-based cathode materials after repeated electrochemical cycling
journal, September 2016

  • Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon
  • APL Materials, Vol. 4, Issue 9
  • DOI: 10.1063/1.4963723

Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries
journal, September 2014

  • Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon
  • Applied Physics Letters, Vol. 105, Issue 10
  • DOI: 10.1063/1.4895336

Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping
journal, April 2017


Mesoscale Battery Science: The Behavior of Electrode Particles Caught on a Multispectral X-ray Camera
journal, June 2018


Chemical composition mapping with nanometre resolution by soft X-ray microscopy
journal, September 2014


SHARP : a distributed GPU-based ptychographic solver
journal, July 2016

  • Marchesini, Stefano; Krishnan, Hari; Daurer, Benedikt J.
  • Journal of Applied Crystallography, Vol. 49, Issue 4
  • DOI: 10.1107/S1600576716008074

Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li x FePO 4
journal, June 2015


Near-edge X-ray refraction fine structure microscopy
journal, February 2017

  • Farmand, Maryam; Celestre, Richard; Denes, Peter
  • Applied Physics Letters, Vol. 110, Issue 6
  • DOI: 10.1063/1.4975377

A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries
journal, June 2020


Effect of Synthetic Parameters on Defects, Structure, and Electrochemical Properties of Layered Oxide LiNi 0.80 Co 0.15 Al 0.05 O 2
journal, January 2018

  • May, Brian M.; Serrano-Sevillano, Jon; Dauphin, Alice L.
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.1211814jes

Phases Formed in Al-Doped Ni[sub 1/3]Mn[sub 1/3]Co[sub 1/3](OH)[sub 2] Prepared by Coprecipitation: Formation of Layered Double Hydroxide
journal, January 2008

  • Zhao, Xuemei; Zhou, Fu; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 155, Issue 9
  • DOI: 10.1149/1.2949405

Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
journal, August 2017


Ptychographic Imaging of Nano-Materials at the Advanced Light Source with the Nanosurveyor Instrument
journal, June 2017


A fast, direct x-ray detection charge-coupled device
journal, August 2009

  • Denes, P.; Doering, D.; Padmore, H. A.
  • Review of Scientific Instruments, Vol. 80, Issue 8
  • DOI: 10.1063/1.3187222

A Threshold Selection Method from Gray-Level Histograms
journal, January 1979


scikit-image: image processing in Python
journal, January 2014

  • van der Walt, Stéfan; Schönberger, Johannes L.; Nunez-Iglesias, Juan
  • PeerJ, Vol. 2
  • DOI: 10.7717/peerj.453

Unmixing of Hyperspectral Images using Bayesian Non-negative Matrix Factorization with Volume Prior
journal, October 2010

  • Arngren, Morten; Schmidt, Mikkel N.; Larsen, Jan
  • Journal of Signal Processing Systems, Vol. 65, Issue 3
  • DOI: 10.1007/s11265-010-0533-2

Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source
journal, February 2003

  • Kilcoyne, A. L. D.; Tyliszczak, T.; Steele, W. F.
  • Journal of Synchrotron Radiation, Vol. 10, Issue 2
  • DOI: 10.1107/S0909049502017739

A unique polarized x-ray facility at the Advanced Photon Source
journal, March 2002

  • Freeland, J. W.; Lang, J. C.; Srajer, G.
  • Review of Scientific Instruments, Vol. 73, Issue 3
  • DOI: 10.1063/1.1435814

An easy-to-implement filter for separating photo-excited signals from topography in scanning tunneling microscopy
journal, June 2013

  • Wang, Kangkang; Rosenmann, Daniel; Holt, Martin
  • Review of Scientific Instruments, Vol. 84, Issue 6
  • DOI: 10.1063/1.4811652

Elemental Fingerprinting of Materials with Sensitivity at the Atomic Limit
journal, October 2014

  • Shirato, Nozomi; Cummings, Marvin; Kersell, Heath
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl5030613

The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges
journal, October 2010


Investigation of inorganic compounds on the surface of cathode materials using Li and O K-edge XANES
journal, December 2007


Electrolyte-Induced Surface Transformation and Transition-Metal Dissolution of Fully Delithiated LiNi 0.8 Co 0.15 Al 0.05 O 2
journal, June 2017


Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power
journal, August 2004


Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy
journal, October 2013

  • Liu, Xiaosong; Wang, Dongdong; Liu, Gao
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3568

A review of Ni-based layered oxides for rechargeable Li-ion batteries
journal, January 2017

  • Xu, Jing; Lin, Feng; Doeff, Marca M.
  • Journal of Materials Chemistry A, Vol. 5, Issue 3
  • DOI: 10.1039/C6TA07991A

Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy
journal, September 2016


Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
journal, January 2014

  • Lin, Feng; Nordlund, Dennis; Markus, Isaac M.
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01400F

In situ X-ray absorption spectroscopy—A probe of cathode materials for Li-ion cells
journal, March 2006


Integrated X-ray L Absorption Spectra. Counting Holes in Ni Complexes
journal, October 1998

  • Wang, Hongxin; Ge, Pinghua; Riordan, C. G.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 42
  • DOI: 10.1021/jp9821026

Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi 0.5 Mn 1.5 O 4 Electrodes
journal, November 2015

  • Qiao, Ruimin; Wray, L. Andrew; Kim, Jung-Hyun
  • The Journal of Physical Chemistry C, Vol. 119, Issue 49
  • DOI: 10.1021/acs.jpcc.5b07479

Revisiting the charge compensation mechanisms in LiNi 0.8 Co 0.2−y Al y O 2 systems
journal, January 2019

  • Lebens-Higgins, Zachary W.; Faenza, Nicholas V.; Radin, Maxwell D.
  • Materials Horizons, Vol. 6, Issue 10
  • DOI: 10.1039/C9MH00765B

Bulk sensitive x-ray absorption spectroscopy free of self-absorption effects
journal, February 2011


Evolution of the Electrode–Electrolyte Interface of LiNi 0.8 Co 0.15 Al 0.05 O 2 Electrodes Due to Electrochemical and Thermal Stress
journal, January 2018


Source Separation in Chemical Analysis : Recent achievements and perspectives
journal, May 2014

  • Duarte, Leonardo Tomazeli; Moussaoui, Said; Jutten, Christian
  • IEEE Signal Processing Magazine, Vol. 31, Issue 3
  • DOI: 10.1109/MSP.2013.2296099

Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment
journal, November 2017


X-ray-excited photoelectron detection using a scanning tunneling microscope
journal, May 2008

  • Rose, V.; Freeland, J. W.; Gray, K. E.
  • Applied Physics Letters, Vol. 92, Issue 19
  • DOI: 10.1063/1.2936083

Synchrotron X-Ray Scanning Tunneling Microscopy: Fingerprinting Near to Far Field Transitions on Cu(111) Induced by Synchrotron Radiation
journal, March 2013

  • Rose, Volker; Wang, Kangkang; Chien, TeYu
  • Advanced Functional Materials, Vol. 23, Issue 20
  • DOI: 10.1002/adfm.201203431

Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy
journal, September 2017

  • Kersell, Heath; Shirato, Nozomi; Cummings, Marvin
  • Applied Physics Letters, Vol. 111, Issue 10
  • DOI: 10.1063/1.4990818

R NiO 3 perovskites ( R =Pr,Nd): Nickel valence and the metal-insulator transition investigated by x-ray-absorption spectroscopy
journal, December 1992


Spin-orbit-induced mixed-spin ground state in R Ni O 3 perovskites probed by x-ray absorption spectroscopy: Insight into the metal-to-insulator transition
journal, January 2005


Capacity-Fading Mechanisms of LiNiO[sub 2]-Based Lithium-Ion Batteries
journal, January 2009

  • Muto, Shunsuke; Sasano, Yusuke; Tatsumi, Kazuyoshi
  • Journal of The Electrochemical Society, Vol. 156, Issue 5
  • DOI: 10.1149/1.3076137

Tuning the Activity of Oxygen in LiNi 0.8 Co 0.15 Al 0.05 O 2 Battery Electrodes
journal, October 2016

  • Karki, Khim; Huang, Yiqing; Hwang, Sooyeon
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b09585

Formation of an Anti-Core–Shell Structure in Layered Oxide Cathodes for Li-Ion Batteries
journal, October 2017


Surface Structural and Chemical Evolution of Layered LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) under High Voltage and Elevated Temperature Conditions
journal, November 2018


Understanding Surface Densified Phases in Ni-Rich Layered Compounds
journal, February 2019


Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries
journal, October 2018


Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon
journal, September 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 19
  • DOI: 10.1021/acs.jpclett.7b01927

Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Mapping polaronic states and lithiation gradients in individual V2O5 nanowires
journal, June 2016

  • De Jesus, Luis R.; Horrocks, Gregory A.; Liang, Yufeng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12022

Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy
journal, July 2017


Soft X-ray XANES studies of various phases related to LiFePO4 based cathode materials
journal, January 2012

  • Yang, Songlan; Wang, Dongniu; Liang, Guoxian
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee03445j