DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A measurement of the equation of state of carbon envelopes of white dwarfs

Abstract

White dwarfs represent the final state of evolution for most stars. Certain classes of white dwarfs pulsate, leading to observable brightness variations, and analysis of these variations with theoretical stellar models probes their internal structure. Modelling of these pulsating stars provides stringent tests of white dwarf models and a detailed picture of the outcome of the late stages of stellar evolution. However, the high-energy-density states that exist in white dwarfs are extremely difficult to reach and to measure in the laboratory, so theoretical predictions are largely untested at these conditions. In this paper we report measurements of the relationship between pressure and density along the principal shock Hugoniot (equations describing the state of the sample material before and after the passage of the shock derived from conservation laws) of hydrocarbon to within five per cent. The observed maximum compressibility is consistent with theoretical models that include detailed electronic structure. This is relevant for the equation of state of matter at pressures ranging from 100 million to 450 million atmospheres, where the understanding of white dwarf physics is sensitive to the equation of state and where models differ considerably. The measurements test these equation-of-state relations that are used in the modellingmore » of white dwarfs and inertial confinement fusion experiments, and we predict an increase in compressibility due to ionization of the inner-core orbitals of carbon. We also find that a detailed treatment of the electronic structure and the electron degeneracy pressure is required to capture the measured shape of the pressure–density evolution for hydrocarbon before peak compression. Our results illuminate the equation of state of the white dwarf envelope (the region surrounding the stellar core that contains partially ionized and partially degenerate non-ideal plasmas), which is a weak link in the constitutive physics informing the structure and evolution of white dwarf stars.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [2];  [1];  [3];  [4];  [1];  [1];  [1];  [5]; ORCiD logo [1]; ORCiD logo [6]; ORCiD logo [1];  [1];  [1];  [7];  [1] more »;  [1];  [1];  [8];  [1];  [3];  [1];  [1];  [9];  [10] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Rochester, NY (United States)
  3. General Atomics, San Diego, CA (United States)
  4. Univ. of Montreal, QC (Canada)
  5. Univ. of Notre Dame, IN (United States)
  6. Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Univ. Dresden (Germany)
  7. GSI Helmholtzzentrum fur Schwerionenforschung BmbH, Darmstadt (Germany)
  8. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  9. Univ. of California, Berkeley, CA (United States)
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States); Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1658868
Alternate Identifier(s):
OSTI ID: 1688586; OSTI ID: 1899612
Report Number(s):
LLNL-JRNL-769585
Journal ID: ISSN 0028-0836; 89233218CNA000001;13-ERD-073;LFR-17-449059; FWP 100182; TRN: US2203372
Grant/Contract Number:  
SC0019269; AC52-07NA27344; NA0003842; SC0018298; 89233218CNA000001; 13-ERD-073; LFR-17-449059; FWP 100182
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 584; Journal Issue: 7819; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Astrophysical plasmas; Laser-produced plasmas; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Kritcher, Andrea L., Swift, Damian C., Döppner, Tilo, Bachmann, Benjamin, Benedict, Lorin X., Collins, Gilbert W., DuBois, Jonathan L., Elsner, Fred, Fontaine, Gilles, Gaffney, Jim A., Hamel, Sebastien, Lazicki, Amy, Johnson, Walter R., Kostinski, Natalie, Kraus, Dominik, MacDonald, Michael J., Maddox, Brian, Martin, Madison E., Neumayer, Paul, Nikroo, Abbas, Nilsen, Joseph, Remington, Bruce A., Saumon, Didier, Sterne, Phillip A., Sweet, Wendi, Correa, Alfredo A., Whitley, Heather D., Falcone, Roger W., and Glenzer, Siegfried H. A measurement of the equation of state of carbon envelopes of white dwarfs. United States: N. p., 2020. Web. doi:10.1038/s41586-020-2535-y.
Kritcher, Andrea L., Swift, Damian C., Döppner, Tilo, Bachmann, Benjamin, Benedict, Lorin X., Collins, Gilbert W., DuBois, Jonathan L., Elsner, Fred, Fontaine, Gilles, Gaffney, Jim A., Hamel, Sebastien, Lazicki, Amy, Johnson, Walter R., Kostinski, Natalie, Kraus, Dominik, MacDonald, Michael J., Maddox, Brian, Martin, Madison E., Neumayer, Paul, Nikroo, Abbas, Nilsen, Joseph, Remington, Bruce A., Saumon, Didier, Sterne, Phillip A., Sweet, Wendi, Correa, Alfredo A., Whitley, Heather D., Falcone, Roger W., & Glenzer, Siegfried H. A measurement of the equation of state of carbon envelopes of white dwarfs. United States. https://doi.org/10.1038/s41586-020-2535-y
Kritcher, Andrea L., Swift, Damian C., Döppner, Tilo, Bachmann, Benjamin, Benedict, Lorin X., Collins, Gilbert W., DuBois, Jonathan L., Elsner, Fred, Fontaine, Gilles, Gaffney, Jim A., Hamel, Sebastien, Lazicki, Amy, Johnson, Walter R., Kostinski, Natalie, Kraus, Dominik, MacDonald, Michael J., Maddox, Brian, Martin, Madison E., Neumayer, Paul, Nikroo, Abbas, Nilsen, Joseph, Remington, Bruce A., Saumon, Didier, Sterne, Phillip A., Sweet, Wendi, Correa, Alfredo A., Whitley, Heather D., Falcone, Roger W., and Glenzer, Siegfried H. Wed . "A measurement of the equation of state of carbon envelopes of white dwarfs". United States. https://doi.org/10.1038/s41586-020-2535-y. https://www.osti.gov/servlets/purl/1658868.
@article{osti_1658868,
title = {A measurement of the equation of state of carbon envelopes of white dwarfs},
author = {Kritcher, Andrea L. and Swift, Damian C. and Döppner, Tilo and Bachmann, Benjamin and Benedict, Lorin X. and Collins, Gilbert W. and DuBois, Jonathan L. and Elsner, Fred and Fontaine, Gilles and Gaffney, Jim A. and Hamel, Sebastien and Lazicki, Amy and Johnson, Walter R. and Kostinski, Natalie and Kraus, Dominik and MacDonald, Michael J. and Maddox, Brian and Martin, Madison E. and Neumayer, Paul and Nikroo, Abbas and Nilsen, Joseph and Remington, Bruce A. and Saumon, Didier and Sterne, Phillip A. and Sweet, Wendi and Correa, Alfredo A. and Whitley, Heather D. and Falcone, Roger W. and Glenzer, Siegfried H.},
abstractNote = {White dwarfs represent the final state of evolution for most stars. Certain classes of white dwarfs pulsate, leading to observable brightness variations, and analysis of these variations with theoretical stellar models probes their internal structure. Modelling of these pulsating stars provides stringent tests of white dwarf models and a detailed picture of the outcome of the late stages of stellar evolution. However, the high-energy-density states that exist in white dwarfs are extremely difficult to reach and to measure in the laboratory, so theoretical predictions are largely untested at these conditions. In this paper we report measurements of the relationship between pressure and density along the principal shock Hugoniot (equations describing the state of the sample material before and after the passage of the shock derived from conservation laws) of hydrocarbon to within five per cent. The observed maximum compressibility is consistent with theoretical models that include detailed electronic structure. This is relevant for the equation of state of matter at pressures ranging from 100 million to 450 million atmospheres, where the understanding of white dwarf physics is sensitive to the equation of state and where models differ considerably. The measurements test these equation-of-state relations that are used in the modelling of white dwarfs and inertial confinement fusion experiments, and we predict an increase in compressibility due to ionization of the inner-core orbitals of carbon. We also find that a detailed treatment of the electronic structure and the electron degeneracy pressure is required to capture the measured shape of the pressure–density evolution for hydrocarbon before peak compression. Our results illuminate the equation of state of the white dwarf envelope (the region surrounding the stellar core that contains partially ionized and partially degenerate non-ideal plasmas), which is a weak link in the constitutive physics informing the structure and evolution of white dwarf stars.},
doi = {10.1038/s41586-020-2535-y},
journal = {Nature (London)},
number = 7819,
volume = 584,
place = {United States},
year = {Wed Aug 05 00:00:00 EDT 2020},
month = {Wed Aug 05 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Purgatorio—a new implementation of the Inferno algorithm
journal, May 2006

  • Wilson, B.; Sonnad, V.; Sterne, P.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.053

White dwarf stars with carbon atmospheres
journal, November 2007


First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


Pulsating white dwarfs: new insights
journal, September 2019

  • Córsico, Alejandro H.; Althaus, Leandro G.; Miller Bertolami, Marcelo M.
  • The Astronomy and Astrophysics Review, Vol. 27, Issue 1
  • DOI: 10.1007/s00159-019-0118-4

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Ramp compression of diamond to five terapascals
journal, July 2014

  • Smith, R. F.; Eggert, J. H.; Jeanloz, R.
  • Nature, Vol. 511, Issue 7509
  • DOI: 10.1038/nature13526

High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves
journal, May 2010

  • Barrios, M. A.; Hicks, D. G.; Boehly, T. R.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3358144

Convective white-dwarf envelope model grids for H-, He-, and C-rich compositions
journal, May 1976

  • Fontaine, G.; van Horn, H. M.
  • The Astrophysical Journal Supplement Series, Vol. 31
  • DOI: 10.1086/190388

High-mode Rayleigh-Taylor growth in NIF ignition capsules
journal, June 2010


Absolute Equation-of-State Data in the 10–40 Mbar (1–4 TPa) Regime
journal, February 1998


Shock Hugoniot and temperature data for polystyrene obtained with quartz standard
journal, June 2009

  • Ozaki, N.; Sano, T.; Ikoma, M.
  • Physics of Plasmas, Vol. 16, Issue 6
  • DOI: 10.1063/1.3152287

Probing matter at Gbar pressures at the NIF
journal, March 2014


Equation of state of iron under core conditions of large rocky exoplanets
journal, April 2018


Advances in NLTE modeling for integrated simulations
journal, January 2010


Hot C-rich white dwarfs: testing the DB–DQ transition through pulsations
journal, August 2009


Equation of state of CH 1.36 : First-principles molecular dynamics simulations and shock-and-release wave speed measurements
journal, September 2012


Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility
journal, November 2014

  • Bachmann, B.; Kritcher, A. L.; Benedetti, L. R.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4891303

Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility
journal, November 2016


Dante soft x-ray power diagnostic for National Ignition Facility
journal, October 2004

  • Dewald, E. L.; Campbell, K. M.; Turner, R. E.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788872

SDSS J142625.71+575218.3: A Prototype for a New Class of Variable White Dwarf
journal, April 2008

  • Montgomery, M. H.; Williams, Kurtis A.; Winget, D. E.
  • The Astrophysical Journal, Vol. 678, Issue 1
  • DOI: 10.1086/588286

Equations of State for Ablator Materials in Inertial Confinement Fusion Simulations
journal, May 2016


Plastic ablator ignition capsule design for the National Ignition Facility
journal, May 2010

  • Clark, Daniel S.; Haan, Steven W.; Hammel, Bruce A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3403293

A Review of Equation-of-State Models for Inertial Confinement Fusion Materials
journal, September 2018


Absolute Equation-of-State Measurement for Polystyrene from 25 to 60 Mbar Using a Spherically Converging Shock Wave
journal, July 2018


The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Pulsating White Dwarf Stars and Precision Asteroseismology
journal, September 2008


Hot DQ White Dwarfs: Something Different
journal, August 2008

  • Dufour, P.; Fontaine, G.; Liebert, James
  • The Astrophysical Journal, Vol. 683, Issue 2
  • DOI: 10.1086/589855

Gigabar material properties experiments on nif and omega
conference, January 2012

  • Swift, Damian; Hawreliak, James; Braun, David
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3686321

The Potential of White Dwarf Cosmochronology
journal, April 2001

  • Fontaine, G.; Brassard, P.; Bergeron, P.
  • Publications of the Astronomical Society of the Pacific, Vol. 113, Issue 782
  • DOI: 10.1086/319535

Multiphase equation of state for carbon addressing high pressures and temperatures
journal, June 2014


Might carbon-atmosphere white dwarfs harbour a new type of pulsating star?
journal, March 2008


A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf
journal, January 2018

  • Giammichele, N.; Charpinet, S.; Fontaine, G.
  • Nature, Vol. 554, Issue 7690
  • DOI: 10.1038/nature25136

Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)
journal, November 2014

  • Hohenberger, M.; Albert, F.; Palmer, N. E.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4890537

An independent method for determining the age of the universe
journal, April 1987

  • Winget, D. E.; Hansen, C. J.; Liebert, James
  • The Astrophysical Journal, Vol. 315
  • DOI: 10.1086/184864

Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas
journal, March 2018

  • Zhang, Shuai; Militzer, Burkhard; Benedict, Lorin X.
  • The Journal of Chemical Physics, Vol. 148, Issue 10
  • DOI: 10.1063/1.5001208

Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography
journal, May 2018

  • Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.
  • Review of Scientific Instruments, Vol. 89, Issue 5
  • DOI: 10.1063/1.5032142

A pulsating white dwarf in an eclipsing binary
journal, March 2020

  • Parsons, Steven G.; Brown, Alexander J.; Littlefair, Stuart P.
  • Nature Astronomy, Vol. 4, Issue 7
  • DOI: 10.1038/s41550-020-1037-z

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740