DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stable Li Metal Anode by a Hybrid Lithium Polysulfidophosphate/Polymer Crosslinking Film

Abstract

The practical application of rechargeable lithium (Li) metal batteries has long been hindered by the unstable Li metal anode with problems like Li dendrite growth, low Coulombic efficiency (CE), and short cycle life. Here, we demonstrate a multifunctional sulfur-containing hybrid Li polysulfidophosphate and poly(2-chloroethyl acrylate) cross-linking film that can provide effective protection for Li metal anode. This film can facilitate Li metal anode generating a stable organic/inorganic hybrid solid electrolyte interphase (SEI) layer containing multiple components such as polymer-tethered organo(poly)sulfide, inorganic Li polysulfidophosphate, Li sulfides, and Li salts. Thanks to this hybrid robust SEI layer, dendrite-free Li deposition and stable cycling of Li metal anode can be achieved (e.g. CE >98.7% over 950 cycles). We demonstrated this Li protection technique enables both the protected Li metal anode and Li-metal-free anode cycling with significantly improved CEs and stability in full cells using LiFePO4 (~2.4 mAh/cm2) cathode.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]
  1. Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
OSTI Identifier:
1657237
Grant/Contract Number:  
EE0007795
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 4; Journal Issue: 6; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 42 ENGINEERING; lithium (Li) metal batteries; solid electrolyte interphase (SEI) layer; Polymer Crosslinking Film

Citation Formats

Zhao, Yuming, Gao, Yue, Li, Guoxing, Wang, Daiwei, Huang, Qingquan, and Wang, Donghai. Stable Li Metal Anode by a Hybrid Lithium Polysulfidophosphate/Polymer Crosslinking Film. United States: N. p., 2019. Web. doi:10.1021/acsenergylett.9b00539.
Zhao, Yuming, Gao, Yue, Li, Guoxing, Wang, Daiwei, Huang, Qingquan, & Wang, Donghai. Stable Li Metal Anode by a Hybrid Lithium Polysulfidophosphate/Polymer Crosslinking Film. United States. https://doi.org/10.1021/acsenergylett.9b00539
Zhao, Yuming, Gao, Yue, Li, Guoxing, Wang, Daiwei, Huang, Qingquan, and Wang, Donghai. Tue . "Stable Li Metal Anode by a Hybrid Lithium Polysulfidophosphate/Polymer Crosslinking Film". United States. https://doi.org/10.1021/acsenergylett.9b00539. https://www.osti.gov/servlets/purl/1657237.
@article{osti_1657237,
title = {Stable Li Metal Anode by a Hybrid Lithium Polysulfidophosphate/Polymer Crosslinking Film},
author = {Zhao, Yuming and Gao, Yue and Li, Guoxing and Wang, Daiwei and Huang, Qingquan and Wang, Donghai},
abstractNote = {The practical application of rechargeable lithium (Li) metal batteries has long been hindered by the unstable Li metal anode with problems like Li dendrite growth, low Coulombic efficiency (CE), and short cycle life. Here, we demonstrate a multifunctional sulfur-containing hybrid Li polysulfidophosphate and poly(2-chloroethyl acrylate) cross-linking film that can provide effective protection for Li metal anode. This film can facilitate Li metal anode generating a stable organic/inorganic hybrid solid electrolyte interphase (SEI) layer containing multiple components such as polymer-tethered organo(poly)sulfide, inorganic Li polysulfidophosphate, Li sulfides, and Li salts. Thanks to this hybrid robust SEI layer, dendrite-free Li deposition and stable cycling of Li metal anode can be achieved (e.g. CE >98.7% over 950 cycles). We demonstrated this Li protection technique enables both the protected Li metal anode and Li-metal-free anode cycling with significantly improved CEs and stability in full cells using LiFePO4 (~2.4 mAh/cm2) cathode.},
doi = {10.1021/acsenergylett.9b00539},
journal = {ACS Energy Letters},
number = 6,
volume = 4,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries
journal, June 2017


Review—Li Metal Anode in Working Lithium-Sulfur Batteries
journal, June 2017

  • Cheng, Xin-Bing; Huang, Jia-Qi; Zhang, Qiang
  • Journal of The Electrochemical Society, Vol. 165, Issue 1
  • DOI: 10.1149/2.0111801jes

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte
journal, August 1998


In situ analytical techniques for battery interface analysis
journal, January 2018

  • Tripathi, Alok M.; Su, Wei-Nien; Hwang, Bing Joe
  • Chemical Society Reviews, Vol. 47, Issue 3
  • DOI: 10.1039/C7CS00180K

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives
journal, October 2018

  • Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier
  • Angewandte Chemie International Edition, Vol. 57, Issue 46
  • DOI: 10.1002/anie.201712702

Bis(2,2,2-trifluoroethyl) Ether As an Electrolyte Co-solvent for Mitigating Self-Discharge in Lithium–Sulfur Batteries
journal, May 2014

  • Gordin, Mikhail L.; Dai, Fang; Chen, Shuru
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501665s

Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
journal, October 2016


Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement
journal, November 2016

  • Liu, Wei; Lin, Dingchang; Pei, Allen
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b08730

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping
journal, November 2016


Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes
journal, October 2017


Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid
journal, July 2017


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries
journal, February 2017


Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries
journal, October 2017

  • Gao, Yue; Zhao, Yuming; Li, Yuguang C.
  • Journal of the American Chemical Society, Vol. 139, Issue 43
  • DOI: 10.1021/jacs.7b06437

Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface
journal, September 2018

  • Gao, Yue; Wang, Daiwei; Li, Yuguang C.
  • Angewandte Chemie International Edition, Vol. 57, Issue 41
  • DOI: 10.1002/anie.201807304

Effects of Polymer Coatings on Electrodeposited Lithium Metal
journal, August 2018

  • Lopez, Jeffrey; Pei, Allen; Oh, Jin Young
  • Journal of the American Chemical Society, Vol. 140, Issue 37
  • DOI: 10.1021/jacs.8b06047

A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery
journal, January 2018

  • Dong, Tiantian; Zhang, Jianjun; Xu, Gaojie
  • Energy & Environmental Science, Vol. 11, Issue 5
  • DOI: 10.1039/C7EE03365F

High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating
journal, November 2016


A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
journal, January 2018

  • Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 57, Issue 6
  • DOI: 10.1002/anie.201710806

Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries
journal, January 2018


Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
journal, June 2012

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200696

Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries
journal, June 2013

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Angewandte Chemie International Edition, Vol. 52, Issue 29
  • DOI: 10.1002/anie.201300680

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery
journal, March 2018


Surface and morphological investigation of the electrode/electrolyte properties in an all-solid-state battery using a Li2S-P2S5 solid electrolyte
journal, April 2017

  • Wu, Xiaohan; El Kazzi, Mario; Villevieille, Claire
  • Journal of Electroceramics, Vol. 38, Issue 2-4
  • DOI: 10.1007/s10832-017-0084-z

Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries
journal, February 2016

  • Chen, Shuru; Dai, Fang; Gordin, Mikhail L.
  • Angewandte Chemie International Edition, Vol. 55, Issue 13
  • DOI: 10.1002/anie.201511830

Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries
journal, February 2016

  • Li, Guoxing; Sun, Jinhua; Hou, Wenpeng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10601

Fabrication of Ordered Nanopattern by using ABC Triblock Copolymer with Salt in Toluene
journal, August 2017


Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode
journal, April 2016


On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF 6 , LiBF 4 , LiDFOB, LiBOB, and LiTFSI
journal, January 2018

  • Parimalam, Bharathy S.; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0901802jes

Works referencing / citing this record:

Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating
journal, January 2019

  • Zhang, Yuanjun; Wang, Guanyao; Tang, Liang
  • Journal of Materials Chemistry A, Vol. 7, Issue 44
  • DOI: 10.1039/c9ta09523c