Robocrystallographer: automated crystal structure text descriptions and analysis
Abstract
Our ability to describe crystal structure features is of crucial importance when attempting to understand structure–property relationships in the solid state. Here, the authors introduce robocrystallographer, an open-source toolkit for analyzing crystal structures. This package combines new and existing open-source analysis tools to provide structural information, including the local coordination and polyhedral type, polyhedral connectivity, octahedral tilt angles, component-dimensionality, and molecule-within-crystal and fuzzy prototype identification. Using this information, robocrystallographer can generate text-based descriptions of crystal structures that resemble descriptions written by human crystallographers. The authors use robocrystallographer to investigate the dimensionalities of all compounds in the Materials Project database and highlight its potential in machine learning studies.
- Authors:
-
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Publication Date:
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Materials Sciences & Engineering Division (SC-22.2)
- OSTI Identifier:
- 1656534
- Grant/Contract Number:
- AC02-05CH11231; KC23MP
- Resource Type:
- Accepted Manuscript
- Journal Name:
- MRS Communications
- Additional Journal Information:
- Journal Volume: 9; Journal Issue: 3; Journal ID: ISSN 2159-6859
- Publisher:
- Materials Research Society - Cambridge University Press
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 36 MATERIALS SCIENCE
Citation Formats
Ganose, Alex M., and Jain, Anubhav. Robocrystallographer: automated crystal structure text descriptions and analysis. United States: N. p., 2019.
Web. doi:10.1557/mrc.2019.94.
Ganose, Alex M., & Jain, Anubhav. Robocrystallographer: automated crystal structure text descriptions and analysis. United States. https://doi.org/10.1557/mrc.2019.94
Ganose, Alex M., and Jain, Anubhav. Mon .
"Robocrystallographer: automated crystal structure text descriptions and analysis". United States. https://doi.org/10.1557/mrc.2019.94. https://www.osti.gov/servlets/purl/1656534.
@article{osti_1656534,
title = {Robocrystallographer: automated crystal structure text descriptions and analysis},
author = {Ganose, Alex M. and Jain, Anubhav},
abstractNote = {Our ability to describe crystal structure features is of crucial importance when attempting to understand structure–property relationships in the solid state. Here, the authors introduce robocrystallographer, an open-source toolkit for analyzing crystal structures. This package combines new and existing open-source analysis tools to provide structural information, including the local coordination and polyhedral type, polyhedral connectivity, octahedral tilt angles, component-dimensionality, and molecule-within-crystal and fuzzy prototype identification. Using this information, robocrystallographer can generate text-based descriptions of crystal structures that resemble descriptions written by human crystallographers. The authors use robocrystallographer to investigate the dimensionalities of all compounds in the Materials Project database and highlight its potential in machine learning studies.},
doi = {10.1557/mrc.2019.94},
journal = {MRS Communications},
number = 3,
volume = 9,
place = {United States},
year = {2019},
month = {7}
}
Web of Science
Works referenced in this record:
Antiferromagnetic Structure of CrV and the Anhydrous Sulfates of Divalent Fe, Ni, and Co
journal, February 1962
- Frazer, B. C.; Brown, P. J.
- Physical Review, Vol. 125, Issue 4
Materials structure genealogy and high-throughput topological classification of surfaces and 2D materials
journal, September 2018
- Himanen, Lauri; Rinke, Patrick; Foster, Adam Stuart
- npj Computational Materials, Vol. 4, Issue 1
A complete representation of structure–property relationships in crystals
journal, May 2008
- van de Walle, A.
- Nature Materials, Vol. 7, Issue 6
ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature
journal, October 2016
- Swain, Matthew C.; Cole, Jacqueline M.
- Journal of Chemical Information and Modeling, Vol. 56, Issue 10
Band alignment of rutile and anatase TiO2
journal, July 2013
- Scanlon, David O.; Dunnill, Charles W.; Buckeridge, John
- Nature Materials, Vol. 12, Issue 9
Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites.
journal, January 1908
- Voronoi, Georges
- Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 1908, Issue 133
Peierls distortions in two and three dimensions and the structures of AB solids
journal, March 1983
- Burdett, Jeremy K.; Lee, Stephen
- Journal of the American Chemical Society, Vol. 105, Issue 5
Computational identification of promising thermoelectric materials among known quasi-2D binary compounds
journal, January 2016
- Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
- Journal of Materials Chemistry A, Vol. 4, Issue 28
Open Babel: An open chemical toolbox
journal, October 2011
- O'Boyle, Noel M.; Banck, Michael; James, Craig A.
- Journal of Cheminformatics, Vol. 3, Issue 1
Statistical Analysis of Coordination Environments in Oxides
journal, September 2017
- Waroquiers, David; Gonze, Xavier; Rignanese, Gian-Marco
- Chemistry of Materials, Vol. 29, Issue 19
Charting the complete elastic properties of inorganic crystalline compounds
journal, March 2015
- de Jong, Maarten; Chen, Wei; Angsten, Thomas
- Scientific Data, Vol. 2, Issue 1
Inverse design in search of materials with target functionalities
journal, March 2018
- Zunger, Alex
- Nature Reviews Chemistry, Vol. 2, Issue 4
Matminer: An open source toolkit for materials data mining
journal, September 2018
- Ward, Logan; Dunn, Alexander; Faghaninia, Alireza
- Computational Materials Science, Vol. 152
Crystal structure representations for machine learning models of formation energies
journal, April 2015
- Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
- International Journal of Quantum Chemistry, Vol. 115, Issue 16
The AFLOW Library of Crystallographic Prototypes: Part 1
journal, August 2017
- Mehl, Michael J.; Hicks, David; Toher, Cormac
- Computational Materials Science, Vol. 136
Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013
- Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
- APL Materials, Vol. 1, Issue 1
Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials
journal, March 2017
- Ashton, Michael; Paul, Joshua; Sinnott, Susan B.
- Physical Review Letters, Vol. 118, Issue 10
The significance of crystal structure
journal, January 1922
- Bragg, William H.
- Journal of the Chemical Society, Transactions, Vol. 121
Präzisionsbestimmung der Gitterkonstanten von A III B v -Verbindungen
journal, May 1958
- Giesecke, G.; Pfister, H.
- Acta Crystallographica, Vol. 11, Issue 5
PubChem Substance and Compound databases
journal, September 2015
- Kim, Sunghwan; Thiessen, Paul A.; Bolton, Evan E.
- Nucleic Acids Research, Vol. 44, Issue D1
Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate
journal, July 1950
- von Hippel, A.
- Reviews of Modern Physics, Vol. 22, Issue 3
A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016
- Ward, Logan; Agrawal, Ankit; Choudhary, Alok
- npj Computational Materials, Vol. 2, Issue 1
Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning
journal, October 2017
- Kim, Edward; Huang, Kevin; Saunders, Adam
- Chemistry of Materials, Vol. 29, Issue 21
BiCuSeO: Synthesis and Crystal Structure
journal, January 1993
- Kholodkovskaya, L. N.; Akselrud, L. G.; Kusainova, A. M.
- Materials Science Forum, Vol. 133-136
Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization
journal, November 2017
- Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav
- Frontiers in Materials, Vol. 4
Benchmarking relief-based feature selection methods for bioinformatics data mining
journal, September 2018
- Urbanowicz, Ryan J.; Olson, Randal S.; Schmitt, Peter
- Journal of Biomedical Informatics, Vol. 85
Kristallstrukturen von NH4GaF4 und NH4GaF4 · NH3
journal, November 1999
- Roos, Meike; Meyer, Gerd
- Zeitschrift für anorganische und allgemeine Chemie, Vol. 625, Issue 11
Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013
- Ong, Shyue Ping; Richards, William Davidson; Jain, Anubhav
- Computational Materials Science, Vol. 68
ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature.
text, January 2016
- Swain, Matthew C.; Cole, Jacqui
- Apollo - University of Cambridge Repository
The significance of crystal structure
journal, September 1922
- Bracc, Sir William
- Journal of the Society of Chemical Industry, Vol. 41, Issue 17
A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials
text, January 2016
- Ward, Logan; Agrawal, Ankit; Choudhary, Alok
- arXiv
Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials
text, January 2016
- Ashton, Michael; Paul, Joshua; Sinnott, Susan B.
- arXiv
Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data Mining
preprint, January 2017
- Urbanowicz, Ryan J.; Olson, Randal S.; Schmitt, Peter
- arXiv
Works referencing / citing this record:
Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity
journal, January 2020
- Zimmermann, Nils E. R.; Jain, Anubhav
- RSC Advances, Vol. 10, Issue 10