DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elastic depths for detecting shape anomalies in functional data

Abstract

Abstract not provided.

Authors:
 [1]; ORCiD logo [2];  [1];  [2]
  1. Univ. of Illinois at Urbana-Champaign, IL (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1650152
Alternate Identifier(s):
OSTI ID: 1670729
Report Number(s):
SAND-2020-8106J; SAND-2019-7579J
Journal ID: ISSN 0040-1706; 689760
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Technometrics
Additional Journal Information:
Journal Volume: 63; Journal Issue: 4; Journal ID: ISSN 0040-1706
Publisher:
Taylor & Francis
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; Anomaly detection; Data depth; Functional data; Shape analysis

Citation Formats

Harris, Trevor, Tucker, J. Derek, Li, Bo, and Shand, Lyndsay. Elastic depths for detecting shape anomalies in functional data. United States: N. p., 2020. Web. doi:10.1080/00401706.2020.1811156.
Harris, Trevor, Tucker, J. Derek, Li, Bo, & Shand, Lyndsay. Elastic depths for detecting shape anomalies in functional data. United States. https://doi.org/10.1080/00401706.2020.1811156
Harris, Trevor, Tucker, J. Derek, Li, Bo, and Shand, Lyndsay. Wed . "Elastic depths for detecting shape anomalies in functional data". United States. https://doi.org/10.1080/00401706.2020.1811156. https://www.osti.gov/servlets/purl/1650152.
@article{osti_1650152,
title = {Elastic depths for detecting shape anomalies in functional data},
author = {Harris, Trevor and Tucker, J. Derek and Li, Bo and Shand, Lyndsay},
abstractNote = {Abstract not provided.},
doi = {10.1080/00401706.2020.1811156},
journal = {Technometrics},
number = 4,
volume = 63,
place = {United States},
year = {2020},
month = {8}
}

Works referenced in this record:

Global envelope tests for spatial processes
journal, March 2016

  • Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel
  • Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 79, Issue 2
  • DOI: 10.1111/rssb.12172

Generative models for functional data using phase and amplitude separation
journal, May 2013


Multivariate Functional Data Visualization and Outlier Detection
journal, August 2018


A Geometric Approach to Visualization of Variability in Functional Data
journal, July 2016

  • Xie, Weiyi; Kurtek, Sebastian; Bharath, Karthik
  • Journal of the American Statistical Association, Vol. 112, Issue 519
  • DOI: 10.1080/01621459.2016.1256813

Outlier Detection in Functional Observations With Applications to Profile Monitoring
journal, August 2012


Rainbow Plots, Bagplots, and Boxplots for Functional Data
journal, January 2010

  • Hyndman, Rob J.; Shang, Han Lin
  • Journal of Computational and Graphical Statistics, Vol. 19, Issue 1
  • DOI: 10.1198/jcgs.2009.08158

Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh)
journal, June 1999

  • Liu, Regina Y.; Parelius, Jesse M.; Singh, Kesar
  • The Annals of Statistics, Vol. 27, Issue 3
  • DOI: 10.1214/aos/1018031260

MUC-4 evaluation metrics
conference, January 1992

  • Chinchor, Nancy
  • Proceedings of the 4th conference on Message understanding - MUC4 '92
  • DOI: 10.3115/1072064.1072067

Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format
journal, October 2013


Depth-Based Recognition of Shape Outlying Functions
journal, October 2017

  • Nagy, Stanislav; Gijbels, Irène; Hlubinka, Daniel
  • Journal of Computational and Graphical Statistics, Vol. 26, Issue 4
  • DOI: 10.1080/10618600.2017.1336445

A Decomposition of Total Variation Depth for Understanding Functional Outliers
journal, May 2019


Directional outlyingness for multivariate functional data
journal, March 2019


A Measure of Directional Outlyingness With Applications to Image Data and Video
journal, April 2018

  • Rousseeuw, Peter J.; Raymaekers, Jakob; Hubert, Mia
  • Journal of Computational and Graphical Statistics, Vol. 27, Issue 2
  • DOI: 10.1080/10618600.2017.1366912

Shape outlier detection and visualization for functional data: the outliergram
journal, March 2014


Functional Boxplots
journal, January 2011

  • Sun, Ying; Genton, Marc G.
  • Journal of Computational and Graphical Statistics, Vol. 20, Issue 2
  • DOI: 10.1198/jcgs.2011.09224

General notions of statistical depth function
journal, April 2000


On the Concept of Depth for Functional Data
journal, June 2009

  • López-Pintado, Sara; Romo, Juan
  • Journal of the American Statistical Association, Vol. 104, Issue 486
  • DOI: 10.1198/jasa.2009.0108

An angle-based multivariate functional pseudo-depth for shape outlier detection
journal, April 2016


A half-region depth for functional data
journal, April 2011


Directional outlyingness for multivariate functional data
journal, March 2019


Shape Analysis of Elastic Curves in Euclidean Spaces
journal, July 2011

  • Srivastava, A.; Klassen, E.; Joshi, S. H.
  • IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, Issue 7
  • DOI: 10.1109/tpami.2010.184

Global envelope tests for spatial processes
journal, March 2016

  • Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel
  • Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 79, Issue 2
  • DOI: 10.1111/rssb.12172

Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance
journal, March 2014

  • Su, Jingyong; Kurtek, Sebastian; Klassen, Eric
  • The Annals of Applied Statistics, Vol. 8, Issue 1
  • DOI: 10.1214/13-aoas701

Remote Sensing Image Stripe Detecting and Destriping Using the Joint Sparsity Constraint with Iterative Support Detection
journal, March 2019

  • Sun, Yun-Jia; Huang, Ting-Zhu; Ma, Tian-Hui
  • Remote Sensing, Vol. 11, Issue 6
  • DOI: 10.3390/rs11060608

General notions of depth for functional data
preprint, January 2012


A Measure of Directional Outlyingness with Applications to Image Data and Video
text, January 2016


A Geometric Approach to Visualization of Variability in Functional Data
text, January 2016


Depth-Based Recognition of Shape Outlying Functions*
text, January 2017