skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Small-Angle Neutron Scattering

Abstract

A molecular-level understanding of transport and adsorption mechanisms of electrolyte ions in nanoporous electrodes under applied potentials is essential to control the performance of double-layer capacitors. In this paper, in operando small-angle neutron scattering (SANS) is used to directly detect ion movements into the nanopores of a conductive metal–organic framework (MOF) electrode under operating conditions. Neutron-scattering data reveals that most of the void space within the MOF is accessible to the solvent. Upon the addition of the electrolyte sodium triflate (NaOTf), the ions are adsorbed on the outer surface of the protrusions to form a 30 Å layer instead of entering the ionophobic pores in the absence of an applied charging potential. The changes in scattering intensity when potentials are applied suggests the ion rearrangement in the micropores following different mechanisms depending on the electrode polarization. These observations shed insights on ion electrosorption in electrode materials.

Authors:
ORCiD logo [1];  [2];  [2];  [3]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1649585
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Volume: 132; Journal Issue: 24; Journal ID: ISSN 0044-8249
Publisher:
German Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; electrosorption; metal–organic frameworks; microporous materials; small-angle neutron scattering; supercapacitors

Citation Formats

He, Lilin, Yang, Luming, Dinca, Mircea, Zhang, Rui, and Li, Jianlin. Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Small-Angle Neutron Scattering. United States: N. p., 2020. Web. https://doi.org/10.1002/ange.201916201.
He, Lilin, Yang, Luming, Dinca, Mircea, Zhang, Rui, & Li, Jianlin. Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Small-Angle Neutron Scattering. United States. https://doi.org/10.1002/ange.201916201
He, Lilin, Yang, Luming, Dinca, Mircea, Zhang, Rui, and Li, Jianlin. Wed . "Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Small-Angle Neutron Scattering". United States. https://doi.org/10.1002/ange.201916201. https://www.osti.gov/servlets/purl/1649585.
@article{osti_1649585,
title = {Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Small-Angle Neutron Scattering},
author = {He, Lilin and Yang, Luming and Dinca, Mircea and Zhang, Rui and Li, Jianlin},
abstractNote = {A molecular-level understanding of transport and adsorption mechanisms of electrolyte ions in nanoporous electrodes under applied potentials is essential to control the performance of double-layer capacitors. In this paper, in operando small-angle neutron scattering (SANS) is used to directly detect ion movements into the nanopores of a conductive metal–organic framework (MOF) electrode under operating conditions. Neutron-scattering data reveals that most of the void space within the MOF is accessible to the solvent. Upon the addition of the electrolyte sodium triflate (NaOTf), the ions are adsorbed on the outer surface of the protrusions to form a 30 Å layer instead of entering the ionophobic pores in the absence of an applied charging potential. The changes in scattering intensity when potentials are applied suggests the ion rearrangement in the micropores following different mechanisms depending on the electrode polarization. These observations shed insights on ion electrosorption in electrode materials.},
doi = {10.1002/ange.201916201},
journal = {Angewandte Chemie},
number = 24,
volume = 132,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Computational Insights into Materials and Interfaces for Capacitive Energy Storage
journal, April 2017


Conductive MOF electrodes for stable supercapacitors with high areal capacitance
journal, October 2016

  • Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4766

Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer
journal, September 2006


A review of electrode materials for electrochemical supercapacitors
journal, January 2012

  • Wang, Guoping; Zhang, Lei; Zhang, Jiujun
  • Chemical Society Reviews, Vol. 41, Issue 2, p. 797-828
  • DOI: 10.1039/C1CS15060J

Accelerating charging dynamics in subnanometre pores
journal, March 2014

  • Kondrat, Svyatoslav; Wu, Peng; Qiao, Rui
  • Nature Materials, Vol. 13, Issue 4
  • DOI: 10.1038/nmat3916

Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry
journal, August 2013

  • Richey, Francis W.; Dyatkin, Boris; Gogotsi, Yury
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja406120e

Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering
journal, January 2015

  • Prehal, C.; Weingarth, D.; Perre, E.
  • Energy & Environmental Science, Vol. 8, Issue 6
  • DOI: 10.1039/C5EE00488H

Investigation of morphology and hydrogen adsorption capacity of disordered carbons
journal, December 2014


Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?
journal, January 2016

  • Kondrat, Svyatoslav; Kornyshev, Alexei A.
  • Nanoscale Horizons, Vol. 1, Issue 1
  • DOI: 10.1039/C5NH00004A

Real-Time NMR Studies of Electrochemical Double-Layer Capacitors
journal, December 2011

  • Wang, Hao; Köster, Thomas K. -J.; Trease, Nicole M.
  • Journal of the American Chemical Society, Vol. 133, Issue 48
  • DOI: 10.1021/ja2072115

Small-Angle Neutron Scattering for In Situ Probing of Ion Adsorption Inside Micropores
journal, February 2013


Oscillation of Capacitance inside Nanopores
journal, December 2011

  • Jiang, De-en; Jin, Zhehui; Wu, Jianzhong
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl202952d

Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties
journal, August 1984


Theoretical Model for Nanoporous Carbon Supercapacitors
journal, January 2008

  • Huang, Jingsong; Sumpter, Bobby G.; Meunier, Vincent
  • Angewandte Chemie, Vol. 120, Issue 3
  • DOI: 10.1002/ange.200703864

Carbons and Electrolytes for Advanced Supercapacitors
journal, February 2014

  • Béguin, François; Presser, Volker; Balducci, Andrea
  • Advanced Materials, Vol. 26, Issue 14, p. 2219-2251
  • DOI: 10.1002/adma.201304137

Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern
journal, January 2011

  • Centeno, Teresa A.; Sereda, Olha; Stoeckli, Fritz
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 27
  • DOI: 10.1039/c1cp20748b

Small angle scattering from porous mass fractal solids
journal, August 1996

  • McMahon, Phillip; Snook, Ian
  • The Journal of Chemical Physics, Vol. 105, Issue 6
  • DOI: 10.1063/1.472085

High Electrical Conductivity in Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 , a Semiconducting Metal–Organic Graphene Analogue
journal, April 2014

  • Sheberla, Dennis; Sun, Lei; Blood-Forsythe, Martin A.
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja502765n

Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR
journal, February 2013

  • Deschamps, Michaël; Gilbert, Edouard; Azais, Philippe
  • Nature Materials, Vol. 12, Issue 4
  • DOI: 10.1038/nmat3567

Efficient storage mechanisms for building better supercapacitors
journal, May 2016


Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges
journal, December 2017


New Perspectives on the Charging Mechanisms of Supercapacitors
journal, April 2016

  • Forse, Alexander C.; Merlet, Céline; Griffin, John M.
  • Journal of the American Chemical Society, Vol. 138, Issue 18
  • DOI: 10.1021/jacs.6b02115

Exploring metal organic frameworks for energy storage in batteries and supercapacitors
journal, May 2017


Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors
journal, June 2010

  • Simon, P.; Gogotsi, Y.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1923, p. 3457-3467
  • DOI: 10.1098/rsta.2010.0109

Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage
journal, October 2009

  • Levi, Mikhael D.; Salitra, Grigory; Levy, Naomi
  • Nature Materials, Vol. 8, Issue 11
  • DOI: 10.1038/nmat2559

Small-angle scattering from porous solids with fractal geometry
journal, August 1986


Characterization and Analysis of Porosity and Pore Structures
journal, January 2015

  • Anovitz, Lawrence M.; Cole, David R.
  • Reviews in Mineralogy and Geochemistry, Vol. 80, Issue 1
  • DOI: 10.2138/rmg.2015.80.04

Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power
journal, December 2017

  • Wang, Xuehang; Mehandzhiyski, Aleksandar Yordanov; Arstad, Bjørnar
  • Journal of the American Chemical Society, Vol. 139, Issue 51
  • DOI: 10.1021/jacs.7b10693

On the mechanism of microporous carbon supercapacitors
journal, March 2018


The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Electrochemical capacitors: mechanism, materials, systems, characterization and applications
journal, January 2016

  • Wang, Yonggang; Song, Yanfang; Xia, Yongyao
  • Chemical Society Reviews, Vol. 45, Issue 21
  • DOI: 10.1039/C5CS00580A

Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size
journal, October 2011

  • Feng, Guang; Cummings, Peter T.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 22
  • DOI: 10.1021/jz201312e

Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor
journal, March 2008

  • Largeot, Celine; Portet, Cristelle; Chmiola, John
  • Journal of the American Chemical Society, Vol. 130, Issue 9
  • DOI: 10.1021/ja7106178

Small-Angle Neutron Scattering for In Situ Probing of Ion Adsorption Inside Micropores
journal, January 2013

  • Boukhalfa, S.; He, L.; Melnichenko, Y. B.
  • Angewandte Chemie International Edition, Vol. 52, Issue 17
  • DOI: 10.1002/anie.201209141

Constant capacitance in nanopores of carbon monoliths
journal, January 2015

  • García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 24
  • DOI: 10.1039/C5CP01904D

Theoretical Model for Nanoporous Carbon Supercapacitors
journal, January 2008

  • Huang, Jingsong; Sumpter, Bobby G.; Meunier, Vincent
  • Angewandte Chemie International Edition, Vol. 47, Issue 3
  • DOI: 10.1002/anie.200703864

Latest advances in supercapacitors: from new electrode materials to novel device designs
journal, January 2017

  • Wang, Faxing; Wu, Xiongwei; Yuan, Xinhai
  • Chemical Society Reviews, Vol. 46, Issue 22
  • DOI: 10.1039/C7CS00205J

Effects of pore size and surface charge on Na ion storage in carbon nanopores
journal, January 2016

  • Karatrantos, Argyrios; Cai, Qiong
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 44
  • DOI: 10.1039/C6CP04611H