DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next–Generation Cobalt–Free Li–Ion Batteries

Abstract

In recent years, cobalt has become a critical constraint on the supply chain of the Li-ion battery industry. Here, with the ever-increasing projections for electric vehicles, the dependency of current Li-ion batteries on the ever-fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt-free materials with general formula of LiNixFeyAlzO2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt-free materials are synthesized using the sol–gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X-ray diffraction, and Mössbauer and X-ray photoelectron spectroscopy to investigate their morphological, physical, and crystal-structure properties. Operando experiments by X-ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li-ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g-1, demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates inmore » next-generation cobalt-free lithium-ion batteries is highlighted here.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]
  1. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1649238
Alternate Identifier(s):
OSTI ID: 1638751
Grant/Contract Number:  
AC05-00OR22725; AC05‐00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 34; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Cobalt‐free cathodes; iron redox; layered cathodes; lithium‐ion batteries; nickel‐rich materials

Citation Formats

Muralidharan, Nitin, Essehli, Rachid, Hermann, Raphael P., Amin, Ruhul, Jafta, Charl, Zhang, Junjie, Liu, Jue, Du, Zhijia, Meyer, III, Harry M., Self, Ethan, Nanda, Jagjit, and Belharouak, Ilias. Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next–Generation Cobalt–Free Li–Ion Batteries. United States: N. p., 2020. Web. doi:10.1002/adma.202002960.
Muralidharan, Nitin, Essehli, Rachid, Hermann, Raphael P., Amin, Ruhul, Jafta, Charl, Zhang, Junjie, Liu, Jue, Du, Zhijia, Meyer, III, Harry M., Self, Ethan, Nanda, Jagjit, & Belharouak, Ilias. Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next–Generation Cobalt–Free Li–Ion Batteries. United States. https://doi.org/10.1002/adma.202002960
Muralidharan, Nitin, Essehli, Rachid, Hermann, Raphael P., Amin, Ruhul, Jafta, Charl, Zhang, Junjie, Liu, Jue, Du, Zhijia, Meyer, III, Harry M., Self, Ethan, Nanda, Jagjit, and Belharouak, Ilias. Wed . "Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next–Generation Cobalt–Free Li–Ion Batteries". United States. https://doi.org/10.1002/adma.202002960. https://www.osti.gov/servlets/purl/1649238.
@article{osti_1649238,
title = {Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next–Generation Cobalt–Free Li–Ion Batteries},
author = {Muralidharan, Nitin and Essehli, Rachid and Hermann, Raphael P. and Amin, Ruhul and Jafta, Charl and Zhang, Junjie and Liu, Jue and Du, Zhijia and Meyer, III, Harry M. and Self, Ethan and Nanda, Jagjit and Belharouak, Ilias},
abstractNote = {In recent years, cobalt has become a critical constraint on the supply chain of the Li-ion battery industry. Here, with the ever-increasing projections for electric vehicles, the dependency of current Li-ion batteries on the ever-fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt-free materials with general formula of LiNixFeyAlzO2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt-free materials are synthesized using the sol–gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X-ray diffraction, and Mössbauer and X-ray photoelectron spectroscopy to investigate their morphological, physical, and crystal-structure properties. Operando experiments by X-ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li-ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g-1, demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates in next-generation cobalt-free lithium-ion batteries is highlighted here.},
doi = {10.1002/adma.202002960},
journal = {Advanced Materials},
number = 34,
volume = 32,
place = {United States},
year = {Wed Jul 15 00:00:00 EDT 2020},
month = {Wed Jul 15 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 66 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes: I. Nickel-Rich, LiNi
journal, December 2016

  • Schipper, Florian; Erickson, Evan M.; Erk, Christoph
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0351701jes

Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?
journal, January 2019

  • Li, Hongyang; Cormier, Marc; Zhang, Ning
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.1381902jes

POWGEN: rebuild of a third-generation powder diffractometer at the Spallation Neutron Source
journal, October 2019

  • Huq, Ashfia; Kirkham, Melanie; Peterson, Peter F.
  • Journal of Applied Crystallography, Vol. 52, Issue 5
  • DOI: 10.1107/S160057671901121X

Material design of high-capacity Li-rich layered-oxide electrodes: Li 2 MnO 3 and beyond
journal, January 2017

  • Kim, Soo; Aykol, Muratahan; Hegde, Vinay I.
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01782K

Sodium deintercalation from sodium iron oxide
journal, June 1994


Study of the Cathode–Electrolyte Interface of LiMn[sub 1.5]Ni[sub 0.5]O[sub 4] Synthesized by a Sol–Gel Method for Li-Ion Batteries
journal, January 2010

  • Duncan, Hugues; Abu-Lebdeh, Yaser; Davidson, Isobel J.
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3321710

Structural and Electrochemical Characterization of Li 2 MnSiO 4 Cathode Material
journal, November 2009

  • Belharouak, Ilias; Abouimrane, A.; Amine, K.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 48
  • DOI: 10.1021/jp905611s

First-Principles Study of Lithium Cobalt Spinel Oxides: Correlating Structure and Electrochemistry
journal, April 2018

  • Kim, Soo; Hegde, Vinay I.; Yao, Zhenpeng
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 16
  • DOI: 10.1021/acsami.8b00394

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


LixNiO2, a promising cathode for rechargeable lithium batteries
journal, March 1995


Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries
journal, January 2012


Characterization of Electronic and Ionic Transport in Li 1- x Ni 0 . 8 Co 0.15 Al 0.05 O 2 (NCA)
journal, January 2015

  • Amin, Ruhul; Ravnsbæk, Dorthe Bomholdt; Chiang, Yet-Ming
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0171507jes

Effect of iron on the electrochemical behaviour of lithium nickelate: from LiNiO2 to 2D-LiFeO2
journal, November 2000


High-nickel layered oxide cathodes for lithium-based automotive batteries
journal, January 2020


Kinetics Tuning of Li-Ion Diffusion in Layered Li(Ni x Mn y Co z )O 2
journal, June 2015

  • Wei, Yi; Zheng, Jiaxin; Cui, Suihan
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04040

Solution combustion synthesis of the nanocrystalline NCM oxide for lithium-ion battery uses
journal, February 2018

  • Habibi, Amirhosein; Jalaly, Maisam; Rahmanifard, Roohollah
  • Materials Research Express, Vol. 5, Issue 2
  • DOI: 10.1088/2053-1591/aaab12

Li-ion battery materials: present and future
journal, June 2015


Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C
journal, March 1992

  • Gummow, R. J.; Thackeray, M. M.; David, W. I. F.
  • Materials Research Bulletin, Vol. 27, Issue 3, p. 327-337
  • DOI: 10.1016/0025-5408(92)90062-5

Extreme fast charging characteristics of zirconia modified LiNi0.5Mn1.5O4 cathode for lithium ion batteries
journal, August 2018


Cobalt-Free Nickel-Rich Positive Electrode Materials with a Core–Shell Structure
journal, November 2019


Updating the Structure and Electrochemistry of Li x NiO 2 for 0 ≤ x ≤ 1
journal, January 2018

  • Li, Hongyang; Zhang, Ning; Li, Jing
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0381813jes

Collapse of LiNi 1– xy Co x Mn y O 2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries
journal, March 2019

  • Li, Wangda; Asl, Hooman Yaghoobnejad; Xie, Qiang
  • Journal of the American Chemical Society, Vol. 141, Issue 13
  • DOI: 10.1021/jacs.8b13798

Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe 3+ /Fe 4+ Redox in α-NaFeO 2
journal, September 2015


Understanding the Origin of the Ultrahigh Rate Performance of a SiO 2 -Modified LiNi 0.5 Mn 1.5 O 4 Cathode for Lithium-Ion Batteries
journal, September 2019

  • Nisar, Umair; Al-Hail, Sara Ahmad J. A.; Petla, Ramesh Kumar
  • ACS Applied Energy Materials, Vol. 2, Issue 10
  • DOI: 10.1021/acsaem.9b01211

How we made the Li-ion rechargeable battery
journal, March 2018


The relationship between the composition of lithium nickel oxide and the loss of reversibility during the first cycle
journal, June 1996


Synthesis and electrochemical characteristics of Li(Ni · M)O2 (M = Co, Mn) cathode for rechargeable lithium batteries
journal, October 1997


Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode
journal, April 2017


Various aspects of LiNiO 2 chemistry: A review
journal, January 2005


Structural evolution and capacity degradation mechanism of LiNi0.6Mn0.2Co0.2O2 cathode materials
journal, October 2018


Electrochemical Performance of Sol-Gel Synthesized LiFePO[sub 4] in Lithium Batteries
journal, January 2004

  • Hu, Yaoqin; Doeff, Marca M.; Kostecki, Robert
  • Journal of The Electrochemical Society, Vol. 151, Issue 8
  • DOI: 10.1149/1.1768546

Thermodynamics of Antisite Defects in Layered NMC Cathodes: Systematic Insights from High-Precision Powder Diffraction Analyses
journal, December 2019


TOPAS and TOPAS-Academic : an optimization program integrating computer algebra and crystallographic objects written in C++
journal, February 2018


VESTA : a three-dimensional visualization system for electronic and structural analysis
journal, May 2008


A reflection on lithium-ion battery cathode chemistry
journal, March 2020


Prospect and Reality of Ni-Rich Cathode for Commercialization
journal, November 2017

  • Kim, Junhyeok; Lee, Hyomyung; Cha, Hyungyeon
  • Advanced Energy Materials, Vol. 8, Issue 6
  • DOI: 10.1002/aenm.201702028

Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2
journal, February 2006


Atomic-Scale Mechanisms of Enhanced Electrochemical Properties of Mo-Doped Co-Free Layered Oxide Cathodes for Lithium-Ion Batteries
journal, September 2019


Layered Li(Ni, M)O 2 Systems as the Cathode Material in Lithium-Ion Batteries
journal, August 2002


Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2
journal, January 2013

  • Martha, Surendra K.; Nanda, Jagjit; Kim, Yoongu
  • Journal of Materials Chemistry A, Vol. 1, Issue 18
  • DOI: 10.1039/c3ta10586e

Ti-substituted Li[Li 0.26 Mn 0.6−x Ti x Ni 0.07 Co 0.07 ]O 2 layered cathode material with improved structural stability and suppressed voltage fading
journal, January 2015

  • Yu, Zhaoxin; Shang, Shun-Li; Gordin, Mikhail L.
  • Journal of Materials Chemistry A, Vol. 3, Issue 33
  • DOI: 10.1039/C5TA03764F

In situ X-ray diffraction and thermal analysis of LiNi0.8Co0.15Al0.05O2 synthesized via co-precipitation method
journal, November 2018


Li 2 MnO 3 Thin Films with Tilted Domain Structure as Cathode for Li-Ion Batteries
journal, April 2019

  • Qi, Zhimin; Tang, Jialiang; Huang, Jijie
  • ACS Applied Energy Materials, Vol. 2, Issue 5
  • DOI: 10.1021/acsaem.9b00259

High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Electrochemical and Thermal Properties of α-NaFeO 2 Cathode for Na-Ion Batteries
journal, January 2013

  • Zhao, Jie; Zhao, Liwei; Dimov, Nikolay
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.007305jes

Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives
journal, December 2016


Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Synthesis and electrochemical characterization of Cr-doped lithium-rich Li1.2Ni0.16Mn0.56Co0.08-xCrxO2 cathodes
journal, October 2018


A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries
journal, January 2017


Study of the Failure Mechanisms of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode Material for Lithium Ion Batteries
journal, January 2015

  • Li, Jing; Downie, Laura E.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1011507jes

LiNi0.5Mn0.3Co0.2O2/Au nanocomposite thin film cathode with enhanced electrochemical properties
journal, April 2018


NCA cathode material: synthesis methods and performance enhancement efforts
journal, September 2018

  • Purwanto, Agus; Yudha, Cornelius Satria; Ubaidillah, U.
  • Materials Research Express, Vol. 5, Issue 12
  • DOI: 10.1088/2053-1591/aae167