DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First divertor physics studies in Wendelstein 7-X

Abstract

The Wendelstein 7-X (W7-X) optimized stellarator fusion experiment, which went into operation in 2015, has been operating since 2017 with an un-cooled modular graphite divertor. This allowed first divertor physics studies to be performed at pulse energies up to 80 MJ, as opposed to 4 MJ in the first operation phase, where five inboard limiters were installed instead of a divertor. This, and a number of other upgrades to the device capabilities, allowed extension into regimes of higher plasma density, heating power, and performance overall, e.g. setting a new stellarator world record triple product. The paper focuses on the first physics studies of how the island divertor works. The plasma heat loads arrive to a very high degree on the divertor plates, with only minor heat loads seen on other components, in particular baffle structures built in to aid neutral compression. The strike line shapes and locations change significantly from one magnetic configuration to another, in very much the same way that codes had predicted they would. Strike-line widths are as large as 10 cm, and the wetted areas also large, up to about 1.5 m2, which bodes well for future operation phases. Peak local heat loads onto the divertormore » were in general benign and project below the 10 MW m–2 limit of the future water-cooled divertor when operated with 10 MW of heating power, with the exception of low-density attached operation in the high-iota configuration. We report the most notable result was the complete (in all 10 divertor units) heat-flux detachment obtained at high-density operation in hydrogen.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2];  [4]; ORCiD logo [2];  [2];  [4];  [2];  [5];  [2];  [6]; ORCiD logo [2]; ORCiD logo [2];  [2]; ORCiD logo [7];  [7] more »;  [8]; ORCiD logo [7];  [7];  [2]; ORCiD logo [7];  [2]; ORCiD logo [7];  [4]; ORCiD logo [5]; ORCiD logo [2];  [2];  [2];  [2];  [5];  [2];  [7];  [2];  [9]; ORCiD logo [2]; ORCiD logo [10];  [2];  [7];  [11]; ORCiD logo [7];  [7];  [12];  [4];  [2];  [5]; ORCiD logo [13];  [13];  [7];  [7];  [7]; ORCiD logo [7]; ORCiD logo [10];  [12];  [14];  [7];  [15];  [7];  [2]; ORCiD logo [2]; ORCiD logo [8];  [2]; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [7];  [2]; ORCiD logo [2];  [16];  [5];  [7];  [7];  [17];  [12];  [4];  [7];  [11]; ORCiD logo [7];  [5]; ORCiD logo [18];  [2];  [4] « less
  1. Max Planck Inst. for Plasma Physics, Greifswald (Germany); Univ. of Greifswald (Germany)
  2. Max Planck Inst. for Plasma Physics, Greifswald (Germany)
  3. Max Planck Inst. for Plasma Physics, Greifswald (Germany); Univ. of Szczecin (Poland)
  4. Wigner Research Center for Physics, Budapest (Hungary)
  5. Univ. of Wisconsin, Madison, WI (United States)
  6. Australian National Univ., Canberra, ACT (Australia)
  7. Forschungszentrum Juelich (Germany)
  8. Univ. of Cagliari (Italy)
  9. Lab. for Plasma Physics, LPP-ERM/KMS, TEC Partner, Brussels (Belgium); Ghent Univ. (Belgium)
  10. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  11. Lab. for Plasma Physics, LPP-ERM/KMS, TEC Partner, Brussels (Belgium)
  12. National Inst. for Fusion Science, Toki (Japan)
  13. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  14. Thermadiag, ZA Le Pontet, Meyreuil (France)
  15. CEA, IRFM, Saint Paul-lez-Durance (France)
  16. Auburn Univ., AL (United States)
  17. Univ. of Szczecin (Poland)
  18. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC); EUROfusion Consortium
Contributing Org.:
The W-7X Team
OSTI Identifier:
1648980
Grant/Contract Number:  
AC05-00OR22725; 633053; SC0014210
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 59; Journal Issue: 9; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; stellarator; magnetic confinement fusion; Wendelstein 7-X; fusion plasma; island divertor

Citation Formats

Sunn Pedersen, T., König, R., Jakubowski, M., Krychowiak, M., Gradic, D., Killer, C., Niemann, H., Szepesi, T., Wenzel, U., Ali, A., Anda, G., Baldzuhn, J., Barbui, T., Biedermann, C., Blackwell, B. D., Bosch, H. -S., Bozhenkov, S., Brakel, R., Brezinsek, S., Cai, J., Cannas, B., Coenen, J. W., Cosfeld, J., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Dunai, D., Effenberg, F., Endler, M., Feng, Y., Fellinger, J., Ford, O., Frerichs, H., Fuchert, G., Gao, Y., Geiger, J., Goriaev, A., Hammond, K., Harris, J., Hathiramani, D., Henkel, M., Kazakov, Ye O., Kirschner, A., Knieps, A., Kobayashi, M., Kocsis, G., Kornejew, P., Kremeyer, T., Lazerzon, S., LeViness, A., Li, C., Li, Y., Liang, Y., Liu, S., Lore, J., Masuzaki, S., Moncada, V., Neubauer, O., Ngo, T. T., Oelmann, J., Otte, M., Perseo, V., Pisano, F., Puig Sitjes, A., Rack, M., Rasinski, M., Romazanov, J., Rudischhauser, L., Schlisio, G., Schmitt, J. C., Schmitz, O., Schweer, B., Sereda, S., Sleczka, M., Suzuki, Y., Vecsei, M., Wang, E., Wauters, T., Wiesen, S., Winters, V., Wurden, G. A., Zhang, D., and Zoletnik, S. First divertor physics studies in Wendelstein 7-X. United States: N. p., 2019. Web. doi:10.1088/1741-4326/ab280f.
Sunn Pedersen, T., König, R., Jakubowski, M., Krychowiak, M., Gradic, D., Killer, C., Niemann, H., Szepesi, T., Wenzel, U., Ali, A., Anda, G., Baldzuhn, J., Barbui, T., Biedermann, C., Blackwell, B. D., Bosch, H. -S., Bozhenkov, S., Brakel, R., Brezinsek, S., Cai, J., Cannas, B., Coenen, J. W., Cosfeld, J., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Dunai, D., Effenberg, F., Endler, M., Feng, Y., Fellinger, J., Ford, O., Frerichs, H., Fuchert, G., Gao, Y., Geiger, J., Goriaev, A., Hammond, K., Harris, J., Hathiramani, D., Henkel, M., Kazakov, Ye O., Kirschner, A., Knieps, A., Kobayashi, M., Kocsis, G., Kornejew, P., Kremeyer, T., Lazerzon, S., LeViness, A., Li, C., Li, Y., Liang, Y., Liu, S., Lore, J., Masuzaki, S., Moncada, V., Neubauer, O., Ngo, T. T., Oelmann, J., Otte, M., Perseo, V., Pisano, F., Puig Sitjes, A., Rack, M., Rasinski, M., Romazanov, J., Rudischhauser, L., Schlisio, G., Schmitt, J. C., Schmitz, O., Schweer, B., Sereda, S., Sleczka, M., Suzuki, Y., Vecsei, M., Wang, E., Wauters, T., Wiesen, S., Winters, V., Wurden, G. A., Zhang, D., & Zoletnik, S. First divertor physics studies in Wendelstein 7-X. United States. https://doi.org/10.1088/1741-4326/ab280f
Sunn Pedersen, T., König, R., Jakubowski, M., Krychowiak, M., Gradic, D., Killer, C., Niemann, H., Szepesi, T., Wenzel, U., Ali, A., Anda, G., Baldzuhn, J., Barbui, T., Biedermann, C., Blackwell, B. D., Bosch, H. -S., Bozhenkov, S., Brakel, R., Brezinsek, S., Cai, J., Cannas, B., Coenen, J. W., Cosfeld, J., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Dunai, D., Effenberg, F., Endler, M., Feng, Y., Fellinger, J., Ford, O., Frerichs, H., Fuchert, G., Gao, Y., Geiger, J., Goriaev, A., Hammond, K., Harris, J., Hathiramani, D., Henkel, M., Kazakov, Ye O., Kirschner, A., Knieps, A., Kobayashi, M., Kocsis, G., Kornejew, P., Kremeyer, T., Lazerzon, S., LeViness, A., Li, C., Li, Y., Liang, Y., Liu, S., Lore, J., Masuzaki, S., Moncada, V., Neubauer, O., Ngo, T. T., Oelmann, J., Otte, M., Perseo, V., Pisano, F., Puig Sitjes, A., Rack, M., Rasinski, M., Romazanov, J., Rudischhauser, L., Schlisio, G., Schmitt, J. C., Schmitz, O., Schweer, B., Sereda, S., Sleczka, M., Suzuki, Y., Vecsei, M., Wang, E., Wauters, T., Wiesen, S., Winters, V., Wurden, G. A., Zhang, D., and Zoletnik, S. Mon . "First divertor physics studies in Wendelstein 7-X". United States. https://doi.org/10.1088/1741-4326/ab280f. https://www.osti.gov/servlets/purl/1648980.
@article{osti_1648980,
title = {First divertor physics studies in Wendelstein 7-X},
author = {Sunn Pedersen, T. and König, R. and Jakubowski, M. and Krychowiak, M. and Gradic, D. and Killer, C. and Niemann, H. and Szepesi, T. and Wenzel, U. and Ali, A. and Anda, G. and Baldzuhn, J. and Barbui, T. and Biedermann, C. and Blackwell, B. D. and Bosch, H. -S. and Bozhenkov, S. and Brakel, R. and Brezinsek, S. and Cai, J. and Cannas, B. and Coenen, J. W. and Cosfeld, J. and Dinklage, A. and Dittmar, T. and Drewelow, P. and Drews, P. and Dunai, D. and Effenberg, F. and Endler, M. and Feng, Y. and Fellinger, J. and Ford, O. and Frerichs, H. and Fuchert, G. and Gao, Y. and Geiger, J. and Goriaev, A. and Hammond, K. and Harris, J. and Hathiramani, D. and Henkel, M. and Kazakov, Ye O. and Kirschner, A. and Knieps, A. and Kobayashi, M. and Kocsis, G. and Kornejew, P. and Kremeyer, T. and Lazerzon, S. and LeViness, A. and Li, C. and Li, Y. and Liang, Y. and Liu, S. and Lore, J. and Masuzaki, S. and Moncada, V. and Neubauer, O. and Ngo, T. T. and Oelmann, J. and Otte, M. and Perseo, V. and Pisano, F. and Puig Sitjes, A. and Rack, M. and Rasinski, M. and Romazanov, J. and Rudischhauser, L. and Schlisio, G. and Schmitt, J. C. and Schmitz, O. and Schweer, B. and Sereda, S. and Sleczka, M. and Suzuki, Y. and Vecsei, M. and Wang, E. and Wauters, T. and Wiesen, S. and Winters, V. and Wurden, G. A. and Zhang, D. and Zoletnik, S.},
abstractNote = {The Wendelstein 7-X (W7-X) optimized stellarator fusion experiment, which went into operation in 2015, has been operating since 2017 with an un-cooled modular graphite divertor. This allowed first divertor physics studies to be performed at pulse energies up to 80 MJ, as opposed to 4 MJ in the first operation phase, where five inboard limiters were installed instead of a divertor. This, and a number of other upgrades to the device capabilities, allowed extension into regimes of higher plasma density, heating power, and performance overall, e.g. setting a new stellarator world record triple product. The paper focuses on the first physics studies of how the island divertor works. The plasma heat loads arrive to a very high degree on the divertor plates, with only minor heat loads seen on other components, in particular baffle structures built in to aid neutral compression. The strike line shapes and locations change significantly from one magnetic configuration to another, in very much the same way that codes had predicted they would. Strike-line widths are as large as 10 cm, and the wetted areas also large, up to about 1.5 m2, which bodes well for future operation phases. Peak local heat loads onto the divertor were in general benign and project below the 10 MW m–2 limit of the future water-cooled divertor when operated with 10 MW of heating power, with the exception of low-density attached operation in the high-iota configuration. We report the most notable result was the complete (in all 10 divertor units) heat-flux detachment obtained at high-density operation in hydrogen.},
doi = {10.1088/1741-4326/ab280f},
journal = {Nuclear Fusion},
number = 9,
volume = 59,
place = {United States},
year = {Mon Jul 22 00:00:00 EDT 2019},
month = {Mon Jul 22 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Advanced neutral gas diagnostics for magnetic confinement devices
journal, September 2017


Real time capable infrared thermography for ASDEX Upgrade
journal, November 2015

  • Sieglin, B.; Faitsch, M.; Herrmann, A.
  • Review of Scientific Instruments, Vol. 86, Issue 11
  • DOI: 10.1063/1.4935580

Major results from the stellarator Wendelstein 7-AS
journal, March 2008


EDICAM (Event Detection Intelligent Camera)
journal, October 2013


Overview of first Wendelstein 7-X high-performance operation
journal, June 2019


Performance and properties of the first plasmas of Wendelstein 7-X
journal, October 2016


Infrared imaging systems for wall protection in the W7-X stellarator (invited)
journal, October 2018

  • Jakubowski, Marcin; Drewelow, Peter; Fellinger, Joris
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5038634

30th EPS Conference on Controlled Fusion and Plasma Physics
journal, November 2003


Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks
journal, December 2011


Overview of first Wendelstein 7-X high-performance operation
text, January 2019


Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER
journal, August 2013


Error fields in the Wendelstein 7-X stellarator
journal, November 2018

  • Lazerson, Samuel A.; Bozhenkov, Sergey; Israeli, Ben
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 12
  • DOI: 10.1088/1361-6587/aae96b

Effects of Net Currents on the Magnetic Configuration of W7-X
journal, July 2010

  • Geiger, J.; Beidler, C. D.; Drevlak, M.
  • Contributions to Plasma Physics, Vol. 50, Issue 8
  • DOI: 10.1002/ctpp.200900028

Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000
journal, November 2016

  • Pedersen, T. Sunn; Otte, M.; Lazerson, S.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13493

First Observation of a Stable Highly Dissipative Divertor Plasma Regime on the Wendelstein 7-X Stellarator
journal, July 2019


MARFE feedback experiments on TEXTOR-94
journal, March 1999


Characterization of the W7-X scrape-off layer using reciprocating probes
journal, June 2019


Design and Analysis of Divertor Scraper Elements for the W7-X Stellarator
journal, March 2014

  • Lore, Jeremy D.; Andreeva, Tamara; Boscary, Jean
  • IEEE Transactions on Plasma Science, Vol. 42, Issue 3
  • DOI: 10.1109/TPS.2014.2303649

Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X
journal, January 2016


Key results from the first plasma operation phase and outlook for future performance in Wendelstein 7-X
journal, May 2017

  • Sunn Pedersen, Thomas; Dinklage, Andreas; Turkin, Yuriy
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983629

Modeling and Preparation for Experimental Testing of Heat Fluxes on W7-X Divertor Scraper Elements
journal, May 2018

  • Lore, J. D.; Cianciosa, M.; Frerichs, H.
  • IEEE Transactions on Plasma Science, Vol. 46, Issue 5
  • DOI: 10.1109/TPS.2017.2780624

Observation of Marfes in the Wendelstein 7-X stellarator with inboard limiters
journal, July 2018


Works referencing / citing this record:

Multi-diagnostic analysis of plasma filaments in the island divertor
journal, November 2019

  • Zoletnik, S.; Anda, G.; Biedermann, C.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 1
  • DOI: 10.1088/1361-6587/ab5241

Why carbon dioxide makes stellarators so important
text, January 2019