skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural changes upon magnetic ordering in magnetocaloric AlFe2B2

Abstract

With a Curie temperature just above room temperature, AlFe2B2 is a useful magnetocaloric material composed of earth-abundant elements. Here, we employ temperature-dependent high-resolution synchrotron X-ray diffraction to establish with high certainty that the paramagnetic to ferromagnetic transition in AlFe2B2 is of second order, showing no discontinuity in lattice parameters or cell volume. Nevertheless, the lattice parameters undergo anisotropic changes across the transition with distinct differences in the thermal expansion coefficients. While the $a$ and $b$ lattice parameters show a positive thermal expansion, $c$ shows a negative thermal expansion. We link these changes to the respective interatomic distances to determine the contribution of magnetism to the anisotropic structural evolution. The work underpins the possible role of magnetostructural coupling in driving the magnetocaloric effect in AlFe2B2.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of California, Santa Barbara, CA (United States)
  2. Florida State Univ., Tallahassee, FL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1648364
Alternate Identifier(s):
OSTI ID: 1630979
Grant/Contract Number:  
AC02-06CH11357; DGE-1650114
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 116; Journal Issue: 21; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
ENGLISH
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Magnetic hysteresis; Magnetic materials; Crystal lattices; Thermal effects; Density functional theory; Magnetic ordering; Synchrotron X-ray diffraction; Phase transitions; Entropy

Citation Formats

Oey, Yuzki M., Bocarsly, Joshua D., Mann, Dallas, Levin, Emily E., Shatruk, Michael, and Seshadri, Ram. Structural changes upon magnetic ordering in magnetocaloric AlFe2B2. United States: N. p., 2020. Web. https://doi.org/10.1063/5.0007266.
Oey, Yuzki M., Bocarsly, Joshua D., Mann, Dallas, Levin, Emily E., Shatruk, Michael, & Seshadri, Ram. Structural changes upon magnetic ordering in magnetocaloric AlFe2B2. United States. https://doi.org/10.1063/5.0007266
Oey, Yuzki M., Bocarsly, Joshua D., Mann, Dallas, Levin, Emily E., Shatruk, Michael, and Seshadri, Ram. Fri . "Structural changes upon magnetic ordering in magnetocaloric AlFe2B2". United States. https://doi.org/10.1063/5.0007266. https://www.osti.gov/servlets/purl/1648364.
@article{osti_1648364,
title = {Structural changes upon magnetic ordering in magnetocaloric AlFe2B2},
author = {Oey, Yuzki M. and Bocarsly, Joshua D. and Mann, Dallas and Levin, Emily E. and Shatruk, Michael and Seshadri, Ram},
abstractNote = {With a Curie temperature just above room temperature, AlFe2B2 is a useful magnetocaloric material composed of earth-abundant elements. Here, we employ temperature-dependent high-resolution synchrotron X-ray diffraction to establish with high certainty that the paramagnetic to ferromagnetic transition in AlFe2B2 is of second order, showing no discontinuity in lattice parameters or cell volume. Nevertheless, the lattice parameters undergo anisotropic changes across the transition with distinct differences in the thermal expansion coefficients. While the $a$ and $b$ lattice parameters show a positive thermal expansion, $c$ shows a negative thermal expansion. We link these changes to the respective interatomic distances to determine the contribution of magnetism to the anisotropic structural evolution. The work underpins the possible role of magnetostructural coupling in driving the magnetocaloric effect in AlFe2B2.},
doi = {10.1063/5.0007266},
journal = {Applied Physics Letters},
number = 21,
volume = 116,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Magnetocaloric Effect in AlFe 2 B 2 : Toward Magnetic Refrigerants from Earth-Abundant Elements
journal, June 2013

  • Tan, Xiaoyan; Chai, Ping; Thompson, Corey M.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja404107p

Magnetoentropic signatures of skyrmionic phase behavior in FeGe
journal, March 2018


From first-order magneto-elastic to magneto-structural transition in (Mn,Fe) 1.95 P 0.50 Si 0.50 compounds
journal, August 2011

  • Dung, N. H.; Zhang, L.; Ou, Z. Q.
  • Applied Physics Letters, Vol. 99, Issue 9
  • DOI: 10.1063/1.3634016

Anisotropic thermal conductivity of magnetocaloric AlFe2B2
journal, September 2018


Phase analysis of AlFe 2 B 2 by synchrotron X-ray diffraction, magnetic and Mössbauer studies
journal, April 2017

  • Ali, Tahir; Khan, M. N.; Ahmed, E.
  • Progress in Natural Science: Materials International, Vol. 27, Issue 2
  • DOI: 10.1016/j.pnsc.2017.03.007

Solid-state cooling with caloric materials
journal, December 2015

  • Takeuchi, Ichiro; Sandeman, Karl
  • Physics Today, Vol. 68, Issue 12
  • DOI: 10.1063/PT.3.3022

Enhanced room-temperature magnetocaloric effect and tunable magnetic response in Ga-and Ge-substituted AlFe2B2
journal, March 2019


Origin of the Invar effect in iron–nickel alloys
journal, July 1999

  • van Schilfgaarde, Mark; Abrikosov, I. A.; Johansson, B.
  • Nature, Vol. 400, Issue 6739
  • DOI: 10.1038/21848

Anisotropic magnetocaloric response in AlFe2B2
journal, May 2018


Magnetocaloric effect: From materials research to refrigeration devices
journal, April 2018


Effects of Al and Fe solubility on the magnetofunctional properties of AlFe 2 B 2
journal, September 2019


TOPAS and TOPAS-Academic : an optimization program integrating computer algebra and crystallographic objects written in C++
journal, February 2018


Phenomenological model of anisotropic peak broadening in powder diffraction
journal, April 1999


On the Optimization of Magneto-Volume Coupling for Practical Applied Field Magnetic Refrigeration
journal, November 2018

  • Davarpanah, Amin; Belo, Joao H.; Amaral, Vitor. S.
  • physica status solidi (b), Vol. 256, Issue 3
  • DOI: 10.1002/pssb.201800419

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Computational screening of magnetocaloric alloys
journal, February 2020


Giant Magnetocaloric Effect in Gd5(Si2Ge2)
journal, June 1997


Making and Breaking Covalent Bonds across the Magnetic Transition in the Giant Magnetocaloric Material Gd 5 ( Si 2 Ge 2 )
journal, May 2000


A Simple Computational Proxy for Screening Magnetocaloric Compounds
journal, February 2017


Magnetic heat pumping near room temperature
journal, August 1976

  • Brown, G. V.
  • Journal of Applied Physics, Vol. 47, Issue 8
  • DOI: 10.1063/1.323176

Magnetic Disorder as a First-Order Phase Transformation
journal, April 1962


From Waste-Heat Recovery to Refrigeration: Compositional Tuning of Magnetocaloric Mn 1+ x Sb
journal, January 2020


Magnetostructural Coupling Drives Magnetocaloric Behavior: The Case of MnB versus FeB
journal, June 2019


The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models
journal, August 2012


Parametric Rietveld refinement
journal, January 2007


Predicting the tricritical point composition of a series of LaFeSi magnetocaloric alloys via universal scaling
journal, September 2017

  • Franco, V.; Law, J. Y.; Conde, A.
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 41
  • DOI: 10.1088/1361-6463/aa8792

The crystal structure of Fe2AlB2
journal, January 1969

  • Jeitschko, W.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 25, Issue 1
  • DOI: 10.1107/S0567740869001944

Some Magnetic Properties of Gadolinium Metal
journal, July 1953

  • Elliott, J. F.; Legvold, S.; Spedding, F. H.
  • Physical Review, Vol. 91, Issue 1
  • DOI: 10.1103/PhysRev.91.28

Structural and electronic properties of Fe(Al x Ga 1– x ) 3 system
journal, October 2016

  • Mondal, Debashis; Kamal, C.; Banik, Soma
  • Journal of Applied Physics, Vol. 120, Issue 16
  • DOI: 10.1063/1.4965718

Tuning the magnetocaloric response in half-Heusler/Heusler MnNi 1 + x Sb solid solutions
journal, December 2017


Magnetocaloric and cooling properties of the intermetallic compound AlFe2B2 in an AMR cycle system
journal, January 2019


Magnetic structure of the magnetocaloric compound AlFe2B2
journal, April 2016


Evolution of noncollinear magnetism in magnetocaloric MnPtGa
journal, April 2020


Investigation of magnetic properties and electronic structure of layered-structure borides Al T 2 B 2 ( T =Fe, Mn, Cr) and AlFe 2–x Mn x B 2
journal, April 2015


Developing magnetofunctionality: Coupled structural and magnetic phase transition in AlFe2B2
journal, November 2015


Magnetic properties of single crystalline itinerant ferromagnet AlFe 2 B 2
journal, August 2018