skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Pressure Synthesis of Metal–Inorganic Frameworks Hf4N20·N2, WN8·N2, and Os5N28·3 N2 with Polymeric Nitrogen Linkers

Abstract

Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one-step synthesis of metal–inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3 N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4N20, WN8, and Os5N28) are built from transition-metal atoms linked either by polymeric polydiazenediyl (polyacetylene-like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high-pressure reaction between Hf and N2 also leads to a non-centrosymmetric polynitride Hf2N11 that features double-helix catena-poly[tetraz-1-ene-1,4-diyl] nitrogen chains [–N–N–N=N–].

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [7];  [7];  [7];  [8];  [2]; ORCiD logo [8];  [9];  [10];  [3]; ORCiD logo [11]; ORCiD logo [4]
  1. Howard Univ., Washington, DC (United States). Dept. of Mathematics; Univ. of Bayreuth (Germany). Bayerisches Geoinstitut; Carnegie Institution for Science, Washington, DC (United States). The Earth and Planets Lab.
  2. Univ. of Chicago, IL (United States). Center for Advanced Radiation Sources
  3. Carnegie Institution for Science, Washington, DC (United States). The Earth and Planets Lab.
  4. Univ. of Bayreuth (Germany). Bayerisches Geoinstitut
  5. Univ. of Bayreuth (Germany). Material Physics and Technology at Extreme Conditions. Lab. of Crystallography
  6. National Univ. of Science and Technology “MISIS”, Moscow (Russian Federation). Materials Modeling and Development Lab.
  7. Linköping Univ. (Sweden). Dept. of Physics, Chemistry and Biology
  8. European Synchrotron Radiation Facility (ESRF), Grenoble (France)
  9. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Photon Science
  10. Howard Univ., Washington, DC (United States). Dept. of Mathematics
  11. Univ. of Bayreuth (Germany). Material Physics and Technology at Extreme Conditions. Lab. of Crystallography; Linköping Univ. (Sweden). Dept. of Physics, Chemistry and Biology
Publication Date:
Research Org.:
Univ. of Chicago, IL (United States); Howard Univ., Washington, DC (United States); Univ. of Bayreuth (Germany); National Univ. of Science and Technology “MISIS”, Moscow (Russian Federation); Linköping Univ. (Sweden)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Army Research Office (ARO); German Research Foundation (DFG); German Federal Ministry of Education and Research (BMBF); Russian Science Foundation; Swedish Government Strategic Research Area in Materials Science on Functional Materials; Knut and Alice Wallenberg Foundation (Sweden); Swedish Research Council (VR)
OSTI Identifier:
1646607
Grant/Contract Number:  
FG02-94ER14466; EAR-1634415; W911NF-19-2-0172; DU 954-11/1; DU 393-9/2; DU 393-13/1; 05K19WC1; 18-12-00492; 2009 00971; KAW-2018.0194; 2019-05600; 2016-05156
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 59; Journal Issue: 26; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Bykov, Maxim, Chariton, Stella, Bykova, Elena, Khandarkhaeva, Saiana, Fedotenko, Timofey, Ponomareva, Alena V., Tidholm, Johan, Tasnádi, Ferenc, Abrikosov, Igor A., Sedmak, Pavel, Prakapenka, Vitali, Hanfland, Michael, Liermann, Hanns‐Peter, Mahmood, Mohammad, Goncharov, Alexander F., Dubrovinskaia, Natalia, and Dubrovinsky, Leonid. High-Pressure Synthesis of Metal–Inorganic Frameworks Hf4N20·N2, WN8·N2, and Os5N28·3 N2 with Polymeric Nitrogen Linkers. United States: N. p., 2020. Web. https://doi.org/10.1002/anie.202002487.
Bykov, Maxim, Chariton, Stella, Bykova, Elena, Khandarkhaeva, Saiana, Fedotenko, Timofey, Ponomareva, Alena V., Tidholm, Johan, Tasnádi, Ferenc, Abrikosov, Igor A., Sedmak, Pavel, Prakapenka, Vitali, Hanfland, Michael, Liermann, Hanns‐Peter, Mahmood, Mohammad, Goncharov, Alexander F., Dubrovinskaia, Natalia, & Dubrovinsky, Leonid. High-Pressure Synthesis of Metal–Inorganic Frameworks Hf4N20·N2, WN8·N2, and Os5N28·3 N2 with Polymeric Nitrogen Linkers. United States. https://doi.org/10.1002/anie.202002487
Bykov, Maxim, Chariton, Stella, Bykova, Elena, Khandarkhaeva, Saiana, Fedotenko, Timofey, Ponomareva, Alena V., Tidholm, Johan, Tasnádi, Ferenc, Abrikosov, Igor A., Sedmak, Pavel, Prakapenka, Vitali, Hanfland, Michael, Liermann, Hanns‐Peter, Mahmood, Mohammad, Goncharov, Alexander F., Dubrovinskaia, Natalia, and Dubrovinsky, Leonid. Tue . "High-Pressure Synthesis of Metal–Inorganic Frameworks Hf4N20·N2, WN8·N2, and Os5N28·3 N2 with Polymeric Nitrogen Linkers". United States. https://doi.org/10.1002/anie.202002487. https://www.osti.gov/servlets/purl/1646607.
@article{osti_1646607,
title = {High-Pressure Synthesis of Metal–Inorganic Frameworks Hf4N20·N2, WN8·N2, and Os5N28·3 N2 with Polymeric Nitrogen Linkers},
author = {Bykov, Maxim and Chariton, Stella and Bykova, Elena and Khandarkhaeva, Saiana and Fedotenko, Timofey and Ponomareva, Alena V. and Tidholm, Johan and Tasnádi, Ferenc and Abrikosov, Igor A. and Sedmak, Pavel and Prakapenka, Vitali and Hanfland, Michael and Liermann, Hanns‐Peter and Mahmood, Mohammad and Goncharov, Alexander F. and Dubrovinskaia, Natalia and Dubrovinsky, Leonid},
abstractNote = {Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one-step synthesis of metal–inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3 N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4N20, WN8, and Os5N28) are built from transition-metal atoms linked either by polymeric polydiazenediyl (polyacetylene-like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high-pressure reaction between Hf and N2 also leads to a non-centrosymmetric polynitride Hf2N11 that features double-helix catena-poly[tetraz-1-ene-1,4-diyl] nitrogen chains [–N–N–N=N–]∞.},
doi = {10.1002/anie.202002487},
journal = {Angewandte Chemie (International Edition)},
number = 26,
volume = 59,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: a)–f) Crystal structures of a) WN8·N2, b) Os5N28·3N2, and c) Hf4N20·N2, and geometries of the channels in the crystal structures (d–f). Distances are given in . g)–i) Types of nitrogen units building the network and types of metal coordination in corresponding compounds. Blue spheres represent nitrogen atoms thatmore » are the part of the framework. Red spheres are dinitrogen molecules confined in the channels. Larger spheres represent corresponding transition metals.« less

Save / Share:

Works referenced in this record:

Syntheses, Crystal Structures and Properties of a Series of 3D Metal–Inorganic Frameworks Containing Pentazolate Anion
journal, May 2018

  • Xu, Yuangang; Lin, Qiuhan; Wang, Pengcheng
  • Chemistry – An Asian Journal, Vol. 13, Issue 13
  • DOI: 10.1002/asia.201800476

Synthesis of Novel Transition Metal Nitrides IrN 2 and OsN 2
journal, April 2006


Chemical Potential of Nitrogen at High Pressure and High Temperature: Application to Nitrogen and Nitrogen-Rich Phase Diagram Calculations
journal, February 2019


[N(CH3)4][Mn(N3)3]: mit Azidoliganden zu einer verzerrten Perowskit-Struktur
journal, January 1996


Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling
journal, April 2018

  • Hobday, Claire L.; Woodall, Christopher H.; Lennox, Matthew J.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-03878-6

High-Pressure Synthesis of a Pentazolate Salt
journal, December 2016


Direct Reaction between Copper and Nitrogen at High Pressures and Temperatures
journal, February 2019

  • Binns, Jack; Donnelly, Mary-Ellen; Peña-Alvarez, Miriam
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 5
  • DOI: 10.1021/acs.jpclett.9b00070

Unconventional Clathrates with Transition Metal–Phosphorus Frameworks
journal, December 2017


Synthesis and characterization of the pentazolate anion cyclo -N 5 ˉ in (N 5 ) 6 (H 3 O) 3 (NH 4 ) 4 Cl
journal, January 2017


Solventless Synthesis of MOFs at High Pressure
journal, June 2016


High-Pressure Synthesis of a Nitrogen-Rich Inclusion Compound ReN 8x  N 2 with Conjugated Polymeric Nitrogen Chains
journal, June 2018

  • Bykov, Maxim; Bykova, Elena; Koemets, Egor
  • Angewandte Chemie International Edition, Vol. 57, Issue 29
  • DOI: 10.1002/anie.201805152

[N(CH3)4][Mn(N3)3]: A Compound with a Distorted Perovskite Structure through Azido Ligands
journal, January 1996

  • Mautner, Franz A.; Cortés, Roberto; Lezama, Luis
  • Angewandte Chemie International Edition in English, Vol. 35, Issue 1
  • DOI: 10.1002/anie.199600781

Stabilization of the Pentazolate Anion in a Zeolitic Architecture with Na 20 N 60 and Na 24 N 60 Nanocages
journal, February 2018

  • Zhang, Wenquan; Wang, Kangcai; Li, Juecheng
  • Angewandte Chemie International Edition, Vol. 57, Issue 10
  • DOI: 10.1002/anie.201710602

Pressure-stabilized hafnium nitrides and their properties
journal, January 2017


Emergence of Novel Polynitrogen Molecule-like Species, Covalent Chains, and Layers in Magnesium–Nitrogen Mg x N y Phases under High Pressure
journal, May 2017

  • Yu, Shuyin; Huang, Bowen; Zeng, Qingfeng
  • The Journal of Physical Chemistry C, Vol. 121, Issue 21
  • DOI: 10.1021/acs.jpcc.7b00474

Applied Topological Analysis of Crystal Structures with the Program Package ToposPro
journal, May 2014

  • Blatov, Vladislav A.; Shevchenko, Alexander P.; Proserpio, Davide M.
  • Crystal Growth & Design, Vol. 14, Issue 7
  • DOI: 10.1021/cg500498k

A series of energetic cyclo -pentazolate salts: rapid synthesis, characterization, and promising performance
journal, January 2019

  • Xu, Yuangang; Tian, Lili; Li, Dongxue
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/C9TA01077G

A series of energetic metal pentazolate hydrates
journal, August 2017


Recent Advances in the Chemistry of N5+, N5− and High-Oxygen Compounds
journal, June 2007


Synthesis of AgN5 and its extended 3D energetic framework
journal, March 2018


Inorganic Double Helices in Semiconducting SnIP
journal, September 2016

  • Pfister, Daniela; Schäfer, Konrad; Ott, Claudia
  • Advanced Materials, Vol. 28, Issue 44
  • DOI: 10.1002/adma.201603135

Stable Calcium Nitrides at Ambient and High Pressures
journal, July 2016


Chemistry and structural chemistry of phosphides and polyphosphides. 48. Bridging chasms with polyphosphides
journal, January 1988

  • Von Schnering, Hans Georg; Hoenle, Wolfgang
  • Chemical Reviews, Vol. 88, Issue 1
  • DOI: 10.1021/cr00083a012

Metal–organic frameworks under pressure
journal, November 2019

  • Collings, Ines E.; Goodwin, Andrew L.
  • Journal of Applied Physics, Vol. 126, Issue 18
  • DOI: 10.1063/1.5126911

Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure
journal, February 2003

  • Zerr, Andreas; Miehe, Gerhard; Riedel, Ralf
  • Nature Materials, Vol. 2, Issue 3
  • DOI: 10.1038/nmat836

BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements
journal, December 2012

  • Kantor, I.; Prakapenka, V.; Kantor, A.
  • Review of Scientific Instruments, Vol. 83, Issue 12, Article No. 125102
  • DOI: 10.1063/1.4768541

Synthesis of magnesium-nitrogen salts of polynitrogen anions
journal, October 2019


Stabilization of the Pentazolate Anion in a Zeolitic Architecture with Na 20 N 60 and Na 24 N 60 Nanocages
journal, February 2018

  • Zhang, Wenquan; Wang, Kangcai; Li, Juecheng
  • Angewandte Chemie, Vol. 130, Issue 10
  • DOI: 10.1002/ange.201710602

High-Pressure Synthesis of a Nitrogen-Rich Inclusion Compound ReN 8 ⋅ x  N 2 with Conjugated Polymeric Nitrogen Chains
journal, June 2018

  • Bykov, Maxim; Bykova, Elena; Koemets, Egor
  • Angewandte Chemie, Vol. 130, Issue 29
  • DOI: 10.1002/ange.201805152

Nitrogen concentration driving the hardness of rhenium nitrides
journal, April 2014

  • Zhao, Zhonglong; Bao, Kuo; Li, Da
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04797

Dynamic and structural stability of cubic vanadium nitride
journal, February 2015


Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains
journal, July 2018


Computational evaluation of metal pentazolate frameworks: inorganic analogues of azolate metal–organic frameworks
journal, January 2018

  • Arhangelskis, Mihails; Katsenis, Athanassios D.; Morris, Andrew J.
  • Chemical Science, Vol. 9, Issue 13
  • DOI: 10.1039/C7SC05020H

The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism
journal, July 2005


Neon-Bearing Ammonium Metal Formates: Formation and Behaviour under Pressure
journal, September 2016


Synthesis of FeN 4 at 180 GPa and its crystal structure from a submicron-sized grain
journal, September 2018

  • Bykov, Maxim; Khandarkhaeva, Saiana; Fedotenko, Timofey
  • Acta Crystallographica Section E Crystallographic Communications, Vol. 74, Issue 10
  • DOI: 10.1107/S2056989018012161

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.