DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017

Abstract

In order to avoid contamination of unobservable and uncertain effective radiative forcing (ERF) on the diagnosis of radiative feedbacks based on short-term climate variability, we verify the Kernel-Gregory feedback calculation method using atmospheric model experiments with prescribed ERF. We show that both clear-sky radiative fluxes and all-sky radiative feedbacks have a closure between model simulations and kernel derivations. A near-zero global mean net cloud feedback is found in the simulation with prescribed ERF, which results in a more negative global net climate feedback, -2 W m-2 K-1. Consistent with AMIP6 ensemble mean results, the lapse rate feedback is the largest contributor among all feedbacks to temperature amplification over the three poles (Arctic, Antarctic and Tibetan Plateau), followed by surface albedo feedback and Planck feedback deviation from its global mean. Except for the higher surface albedo feedback in the Antarctic, other feedbacks are almost same between the Arctic and Antarctic.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1646601
Alternate Identifier(s):
OSTI ID: 1646602
Report Number(s):
PNNL-SA-150269
Journal ID: ISSN 0094-8276;1944-8007
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 47; Journal Issue: 12; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Zhang, Rudong, Wang, Hailong, Fu, Qiang, and Rasch, Philip J. Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017. United States: N. p., 2020. Web. doi:10.1029/2020gl088063.
Zhang, Rudong, Wang, Hailong, Fu, Qiang, & Rasch, Philip J. Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017. United States. https://doi.org/10.1029/2020gl088063
Zhang, Rudong, Wang, Hailong, Fu, Qiang, and Rasch, Philip J. Tue . "Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017". United States. https://doi.org/10.1029/2020gl088063. https://www.osti.gov/servlets/purl/1646601.
@article{osti_1646601,
title = {Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017},
author = {Zhang, Rudong and Wang, Hailong and Fu, Qiang and Rasch, Philip J.},
abstractNote = {In order to avoid contamination of unobservable and uncertain effective radiative forcing (ERF) on the diagnosis of radiative feedbacks based on short-term climate variability, we verify the Kernel-Gregory feedback calculation method using atmospheric model experiments with prescribed ERF. We show that both clear-sky radiative fluxes and all-sky radiative feedbacks have a closure between model simulations and kernel derivations. A near-zero global mean net cloud feedback is found in the simulation with prescribed ERF, which results in a more negative global net climate feedback, -2 W m-2 K-1. Consistent with AMIP6 ensemble mean results, the lapse rate feedback is the largest contributor among all feedbacks to temperature amplification over the three poles (Arctic, Antarctic and Tibetan Plateau), followed by surface albedo feedback and Planck feedback deviation from its global mean. Except for the higher surface albedo feedback in the Antarctic, other feedbacks are almost same between the Arctic and Antarctic.},
doi = {10.1029/2020gl088063},
journal = {Geophysical Research Letters},
number = 12,
volume = 47,
place = {United States},
year = {Tue Jun 09 00:00:00 EDT 2020},
month = {Tue Jun 09 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Observation‐Based Radiative Kernels From CloudSat/CALIPSO
journal, May 2019

  • Kramer, Ryan J.; Matus, Alexander V.; Soden, Brian J.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 10
  • DOI: 10.1029/2018JD029021

Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere
journal, September 2005


Satellite-derived vertical dependence of tropical tropospheric temperature trends
journal, January 2005


Radiative forcing and climate response
journal, March 1997

  • Hansen, J.; Sato, M.; Ruedy, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D6
  • DOI: 10.1029/96JD03436

Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks
journal, April 2017


A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model
journal, October 2008

  • Hurrell, James W.; Hack, James J.; Shea, Dennis
  • Journal of Climate, Vol. 21, Issue 19
  • DOI: 10.1175/2008JCLI2292.1

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
journal, January 2016

  • Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.
  • Geoscientific Model Development, Vol. 9, Issue 5
  • DOI: 10.5194/gmd-9-1937-2016

A new method for diagnosing radiative forcing and climate sensitivity
journal, January 2004


Using Relative Humidity as a State Variable in Climate Feedback Analysis
journal, April 2012


On the pattern of CO 2 radiative forcing and poleward energy transport : CO
journal, October 2017

  • Huang, Yi; Xia, Yan; Tan, Xiaoxiao
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 20
  • DOI: 10.1002/2017JD027221

Impact of decadal cloud variations on the Earth’s energy budget
journal, October 2016

  • Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.
  • Nature Geoscience, Vol. 9, Issue 12
  • DOI: 10.1038/ngeo2828

An Overview of CMIP5 and the Experiment Design
journal, April 2012

  • Taylor, Karl E.; Stouffer, Ronald J.; Meehl, Gerald A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 4
  • DOI: 10.1175/BAMS-D-11-00094.1

Inference of Climate Sensitivity from Analysis of Earth's Energy Budget
journal, June 2016


Observation-Based Longwave Cloud Radiative Kernels Derived from the A-Train
journal, March 2016


Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth
journal, June 2012

  • Zelinka, Mark D.; Klein, Stephen A.; Hartmann, Dennis L.
  • Journal of Climate, Vol. 25, Issue 11
  • DOI: 10.1175/JCLI-D-11-00249.1

Arctic amplification dominated by temperature feedbacks in contemporary climate models
journal, February 2014

  • Pithan, Felix; Mauritsen, Thorsten
  • Nature Geoscience, Vol. 7, Issue 3
  • DOI: 10.1038/ngeo2071

Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends
journal, May 2004

  • Fu, Qiang; Johanson, Celeste M.; Warren, Stephen G.
  • Nature, Vol. 429, Issue 6987
  • DOI: 10.1038/nature02524

The polar regions in a 2°C warmer world
journal, December 2019

  • Post, Eric; Alley, Richard B.; Christensen, Torben R.
  • Science Advances, Vol. 5, Issue 12
  • DOI: 10.1126/sciadv.aaw9883

Key indicators of Arctic climate change: 1971–2017
journal, April 2019

  • Box, Jason E.; Colgan, William T.; Christensen, Torben Røjle
  • Environmental Research Letters, Vol. 14, Issue 4
  • DOI: 10.1088/1748-9326/aafc1b

Origins of differences in climate sensitivity, forcing and feedback in climate models
journal, April 2012


Time-Varying Climate Sensitivity from Regional Feedbacks
journal, July 2013


Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5
journal, January 2018

  • Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.
  • Earth System Science Data, Vol. 10, Issue 1
  • DOI: 10.5194/essd-10-317-2018

Four perspectives on climate feedbacks: PERSPECTIVES
journal, July 2013

  • Feldl, N.; Roe, G. H.
  • Geophysical Research Letters, Vol. 40, Issue 15
  • DOI: 10.1002/grl.50711

The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability
journal, August 2015

  • Kay, J. E.; Deser, C.; Phillips, A.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 8
  • DOI: 10.1175/BAMS-D-13-00255.1

Quantifying climate feedbacks in polar regions
journal, May 2018


Local Radiative Feedbacks Over the Arctic Based on Observed Short-Term Climate Variations
journal, June 2018

  • Zhang, Rudong; Wang, Hailong; Fu, Qiang
  • Geophysical Research Letters, Vol. 45, Issue 11
  • DOI: 10.1029/2018GL077852

Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations
journal, February 2018

  • Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.
  • Geophysical Research Letters, Vol. 45, Issue 3
  • DOI: 10.1002/2017GL076468

On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates
journal, March 2013


Evaluating Climate Model Simulations of the Radiative Forcing and Radiative Response at Earth’s Surface
journal, June 2019

  • Kramer, Ryan J.; Soden, Brian J.; Pendergrass, Angeline G.
  • Journal of Climate, Vol. 32, Issue 13
  • DOI: 10.1175/JCLI-D-18-0137.1

Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data
journal, January 2018

  • Skeie, Ragnhild Bieltvedt; Berntsen, Terje; Aldrin, Magne
  • Earth System Dynamics, Vol. 9, Issue 2
  • DOI: 10.5194/esd-9-879-2018

Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s
journal, November 2019

  • Zhang, Rudong; Wang, Hailong; Fu, Qiang
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 48
  • DOI: 10.1073/pnas.1915258116

The Sensitivity of the Hydrological Cycle to Internal Climate Variability versus Anthropogenic Climate Change
journal, May 2016


How accurately can the climate sensitivity to $$\hbox {CO}_{2}$$CO2 be estimated from historical climate change?
journal, October 2019


The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models
journal, February 2015


Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks
journal, April 2018

  • Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.
  • Journal of Climate, Vol. 31, Issue 8
  • DOI: 10.1175/JCLI-D-17-0674.1

On the warming in the tropical upper troposphere: Models versus observations: ON TROPICAL UPPER TROPOSPHERIC WARMING
journal, August 2011

  • Fu, Qiang; Manabe, Syukuro; Johanson, Celeste M.
  • Geophysical Research Letters, Vol. 38, Issue 15
  • DOI: 10.1029/2011GL048101

Quantifying Climate Feedbacks Using Radiative Kernels
journal, July 2008

  • Soden, Brian J.; Held, Isaac M.; Colman, Robert
  • Journal of Climate, Vol. 21, Issue 14
  • DOI: 10.1175/2007JCLI2110.1

The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6
journal, January 2016

  • Pincus, Robert; Forster, Piers M.; Stevens, Bjorn
  • Geoscientific Model Development, Vol. 9, Issue 9
  • DOI: 10.5194/gmd-9-3447-2016

An Estimate of Equilibrium Climate Sensitivity From Interannual Variability
journal, August 2018

  • Dessler, A. E.; Forster, P. M.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 16
  • DOI: 10.1029/2018JD028481

Cloud feedback mechanisms and their representation in global climate models: Cloud feedback mechanisms and their representation in GCMs
journal, May 2017

  • Ceppi, Paulo; Brient, Florent; Zelinka, Mark D.
  • Wiley Interdisciplinary Reviews: Climate Change, Vol. 8, Issue 4
  • DOI: 10.1002/wcc.465

Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity
journal, January 2016

  • Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.
  • Journal of Climate, Vol. 29, Issue 2
  • DOI: 10.1175/JCLI-D-15-0352.1

The Radiative Feedback During the ENSO Cycle: Observations Versus Models
journal, September 2018

  • Kolly, A.; Huang, Y.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 17
  • DOI: 10.1029/2018JD028401

An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models
journal, July 2006

  • Soden, Brian J.; Held, Isaac M.
  • Journal of Climate, Vol. 19, Issue 14
  • DOI: 10.1175/JCLI3799.1

Using the Radiative Kernel Technique to Calculate Climate Feedbacks in NCAR’s Community Atmospheric Model
journal, May 2008

  • Shell, Karen M.; Kiehl, Jeffrey T.; Shields, Christine A.
  • Journal of Climate, Vol. 21, Issue 10
  • DOI: 10.1175/2007JCLI2044.1

How Well Do We Understand and Evaluate Climate Change Feedback Processes?
journal, August 2006

  • Bony, Sandrine; Colman, Robert; Kattsov, Vladimir M.
  • Journal of Climate, Vol. 19, Issue 15
  • DOI: 10.1175/JCLI3819.1

The Effects of Doubling the CO 2 Concentration on the climate of a General Circulation Model
journal, January 1975


A Determination of the Cloud Feedback from Climate Variations over the Past Decade
journal, December 2010


Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth: VARIATIONS IN TEMPERATURES AND RADIATION
journal, May 2015

  • Trenberth, Kevin E.; Zhang, Yongxin; Fasullo, John T.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 9
  • DOI: 10.1002/2014JD022887

Human influence on the seasonal cycle of tropospheric temperature
journal, July 2018

  • Santer, Benjamin D.; Po-Chedley, Stephen; Zelinka, Mark D.
  • Science, Vol. 361, Issue 6399
  • DOI: 10.1126/science.aas8806