skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability

Abstract

Interfacial reactions between electrode and electrolyte are critical, either beneficial or detrimental, for the performance of rechargeable batteries. The general approaches of controlling interfacial reactions are either applying a coating layer on cathode or modifying the electrolyte chemistry. Here we demonstrate an approach of modification of interfacial reactions through dilute lattice doping for enhanced battery properties. Using atomic level imaging, spectroscopic analysis and density functional theory calculation, we reveal aluminum dopants in lithium nickel cobalt aluminum oxide are partially dissolved in the bulk lattice with a tendency of enrichment near the primary particle surface and partially exist as aluminum oxide nano-islands that are epitaxially dressed on the primary particle surface. The aluminum concentrated surface lowers transition metal redox energy level and consequently promotes the formation of a stable cathode-electrolyte interphase. The present observations demonstrate a general principle as how the trace dopants modify the solid-liquid interfacial reactions for enhanced performance.

Authors:
; ; ; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1644162
Alternate Identifier(s):
OSTI ID: 1571502
Report Number(s):
PNNL-SA-144976
Journal ID: ISSN 2041-1723; 3447; PII: 11299
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 10 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Zou, Lianfeng, Li, Jianyu, Liu, Zhenyu, Wang, Guofeng, Manthiram, Arumugam, and Wang, Chongmin. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. United Kingdom: N. p., 2019. Web. https://doi.org/10.1038/s41467-019-11299-2.
Zou, Lianfeng, Li, Jianyu, Liu, Zhenyu, Wang, Guofeng, Manthiram, Arumugam, & Wang, Chongmin. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. United Kingdom. https://doi.org/10.1038/s41467-019-11299-2
Zou, Lianfeng, Li, Jianyu, Liu, Zhenyu, Wang, Guofeng, Manthiram, Arumugam, and Wang, Chongmin. Thu . "Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability". United Kingdom. https://doi.org/10.1038/s41467-019-11299-2.
@article{osti_1644162,
title = {Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability},
author = {Zou, Lianfeng and Li, Jianyu and Liu, Zhenyu and Wang, Guofeng and Manthiram, Arumugam and Wang, Chongmin},
abstractNote = {Interfacial reactions between electrode and electrolyte are critical, either beneficial or detrimental, for the performance of rechargeable batteries. The general approaches of controlling interfacial reactions are either applying a coating layer on cathode or modifying the electrolyte chemistry. Here we demonstrate an approach of modification of interfacial reactions through dilute lattice doping for enhanced battery properties. Using atomic level imaging, spectroscopic analysis and density functional theory calculation, we reveal aluminum dopants in lithium nickel cobalt aluminum oxide are partially dissolved in the bulk lattice with a tendency of enrichment near the primary particle surface and partially exist as aluminum oxide nano-islands that are epitaxially dressed on the primary particle surface. The aluminum concentrated surface lowers transition metal redox energy level and consequently promotes the formation of a stable cathode-electrolyte interphase. The present observations demonstrate a general principle as how the trace dopants modify the solid-liquid interfacial reactions for enhanced performance.},
doi = {10.1038/s41467-019-11299-2},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United Kingdom},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41467-019-11299-2

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effects of aluminum on the structural and electrochemical properties of LiNiO2
journal, April 2003


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Revealing Cycling Rate-Dependent Structure Evolution in Ni-Rich Layered Cathode Materials
journal, September 2018


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Facilitating the Operation of Lithium-Ion Cells with High-Nickel Layered Oxide Cathodes with a Small Dose of Aluminum
journal, April 2018


Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems
journal, September 2013

  • Zhan, Chun; Lu, Jun; Jeremy Kropf, A.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3437

Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries
journal, February 2016

  • Nayak, Prasant Kumar; Grinblat, Judith; Levi, Mikhael
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502398

In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode LiMn 1.5 Ni 0.5 O 4
journal, October 2014

  • Browning, James F.; Baggetto, Loïc; Jungjohann, Katherine L.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am5032055

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Aliovalent titanium substitution in layered mixed Li Ni–Mn–Co oxides for lithium battery applications
journal, January 2011

  • Kam, Kinson C.; Doeff, Marca M.
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04193a

Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries
journal, January 2018

  • Kim, U. -H.; Jun, D. -W.; Park, K. -J.
  • Energy & Environmental Science, Vol. 11, Issue 5
  • DOI: 10.1039/C8EE00227D

Unraveling the Effects of Al Doping on the Electrochemical Properties of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Using First Principles
journal, January 2017

  • Dixit, Mudit; Markovsky, Boris; Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0561701jes

The truth about the 1st cycle Coulombic efficiency of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) cathodes
journal, January 2016

  • Kasnatscheew, J.; Evertz, M.; Streipert, B.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 5
  • DOI: 10.1039/C5CP07718D

Effect of Aluminum Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li1+x(Ni0.40Mn0.40Co0.20−zAlz)1−xO2
journal, January 2011

  • Croguennec, L.; Bains, J.; Bréger, J.
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3571479

Lithium Insertion into Transition-Metal Monosulfides: Tuning the Position of the Metal 4s Band
journal, August 2008

  • Kim, Youngsik; Goodenough, John B.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 38
  • DOI: 10.1021/jp8038847

Role of surface coating on cathode materials for lithium-ion batteries
journal, January 2010

  • Chen, Zonghai; Qin, Yan; Amine, Khalil
  • Journal of Materials Chemistry, Vol. 20, Issue 36, p. 7606-7612
  • DOI: 10.1039/c0jm00154f

Thermal Stability of Lithium Nickel Oxide Derivatives. Part I: Li x Ni 1.02 O 2 and Li x Ni 0.89 Al 0.16 O 2 ( x = 0.50 and 0.30)
journal, November 2003

  • Guilmard, M.; Croguennec, L.; Denux, D.
  • Chemistry of Materials, Vol. 15, Issue 23
  • DOI: 10.1021/cm030059f

Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi 0.6 Mn 0.2 Co 0.2 O 2
journal, January 2016

  • Zeng, Xiaoqiao; Xu, Gui-Liang; Li, Yan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 5
  • DOI: 10.1021/acsami.5b11800

Segregation Tendency in Layered Aluminum-Substituted Lithium Nickel Oxides
journal, March 2009

  • Croguennec, L.; Shao-Horn, Y.; Gloter, A.
  • Chemistry of Materials, Vol. 21, Issue 6
  • DOI: 10.1021/cm802954g

Recent progress in cathode materials research for advanced lithium ion batteries
journal, May 2012

  • Xu, Bo; Qian, Danna; Wang, Ziying
  • Materials Science and Engineering: R: Reports, Vol. 73, Issue 5-6
  • DOI: 10.1016/j.mser.2012.05.003

Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries
journal, February 2015

  • Nayak, Prasant Kumar; Grinblat, Judith; Levi, Mikhael
  • Journal of Solid State Electrochemistry, Vol. 19, Issue 9
  • DOI: 10.1007/s10008-015-2790-2

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material
journal, September 2013


Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery
journal, August 2014


Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review
journal, January 2018

  • Zhan, Chun; Wu, Tianpin; Lu, Jun
  • Energy & Environmental Science, Vol. 11, Issue 2
  • DOI: 10.1039/C7EE03122J

Locating redox couples in the layered sulfides with application to Cu[Cr2]S4
journal, October 2009


Revealing the Conversion Mechanism of Transition Metal Oxide Electrodes during Lithiation from First-Principles
journal, October 2017


Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase
journal, September 2018


Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries
journal, July 2008


Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability
journal, February 2018

  • Li, Wangda; Liu, Xiaoming; Celio, Hugo
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703154

Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries
journal, February 2017

  • Kondrakov, Aleksandr O.; Schmidt, Alexander; Xu, Jin
  • The Journal of Physical Chemistry C, Vol. 121, Issue 6
  • DOI: 10.1021/acs.jpcc.6b12885

Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
journal, May 2013

  • Miller, Dean J.; Proff, Christian; Wen, J. G.
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300015

Ab initio study of doping effects on LiMnO 2 and Li 2 MnO 3 cathode materials for Li-ion batteries
journal, January 2015

  • Kong, Fantai; Longo, Roberto C.; Park, Min-Sik
  • Journal of Materials Chemistry A, Vol. 3, Issue 16
  • DOI: 10.1039/C5TA01445J

In Situ XRD of Highly Charged and Discharged Li
conference, January 2006

  • Nikolowski, Kristian M.; Bramnik, Natalia; Baehtz, Carsten
  • 208th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.2209353

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells
journal, December 2016

  • Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1111702jes

Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi 1– yz Co y Al z O 2 and Al-Doped LiNi x Mn y Co z O 2 via 27 Al MAS NMR Spectroscopy
journal, June 2016

  • Dogan, Fulya; Vaughey, John T.; Iddir, Hakim
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 26
  • DOI: 10.1021/acsami.6b04516

Double roles of aluminium ion on surface-modified spinel LiMn1.97Ti0.03O4
journal, January 2011

  • Xiong, Lilong; Xu, Youlong; Tao, Tao
  • Journal of Materials Chemistry, Vol. 21, Issue 13
  • DOI: 10.1039/c0jm03498c

Charge disproportionation and Jahn-Teller distortion in LiNiO 2 and NaNiO 2 : A density functional theory study
journal, August 2011


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Inhomogeneous Electron Gas
journal, November 1964


Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


Thermodynamic and kinetic studies of LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode material for Li-ion batteries using first principles
journal, January 2016

  • Dixit, Mudit; Kosa, Monica; Lavi, Onit Srur
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 9
  • DOI: 10.1039/C5CP07128C

Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries
journal, January 2012

  • He, Ping; Yu, Haijun; Li, De
  • Journal of Materials Chemistry, Vol. 22, Issue 9
  • DOI: 10.1039/c2jm14305d

Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells
journal, August 2002


Structural, electrical and electrochemical properties of LiNiO2
journal, January 2002


Mitigation of Layered to Spinel Conversion of a Li-Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries
journal, December 2013

  • Ates, Mehmet Nurullah; Jia, Qingying; Shah, Ankita
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.040403jes

Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes
journal, May 2017


K + -Doped Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 : A Novel Cathode Material with an Enhanced Cycling Stability for Lithium-Ion Batteries
journal, June 2014

  • Li, Qi; Li, Guangshe; Fu, Chaochao
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 13
  • DOI: 10.1021/am5017649

Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


Extending the Battery Life Using an Al-Doped Li[Ni 0.76 Co 0.09 Mn 0.15 ]O 2 Cathode with Concentration Gradients for Lithium Ion Batteries
journal, July 2017


A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries
journal, January 2018

  • Kim, Junhyeok; Ma, Hyunsoo; Cha, Hyungyeon
  • Energy & Environmental Science, Vol. 11, Issue 6
  • DOI: 10.1039/C8EE00155C

Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Study of the Failure Mechanisms of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode Material for Lithium Ion Batteries
journal, January 2015

  • Li, Jing; Downie, Laura E.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1011507jes

Magnesium-Doped Li 1.2 [Co 0.13 Ni 0.13 Mn 0.54 ]O 2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability
journal, March 2015

  • Wang, Yan X.; Shang, Ke H.; He, Wei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 23
  • DOI: 10.1021/acsami.5b03125

Inhomogeneous Electron Gas
journal, March 1973


    Works referencing / citing this record:

    Unveiling Nickel Chemistry in Stabilizing High‐Voltage Cobalt‐Rich Cathodes for Lithium‐Ion Batteries
    journal, November 2019

    • Yoon, Moonsu; Dong, Yanhao; Yoo, Youngbin
    • Advanced Functional Materials, Vol. 30, Issue 6
    • DOI: 10.1002/adfm.201907903