skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Beyond Barnwell: Applying lessons learned from the Barnwell site to other historic underground nuclear tests at Pahute Mesa to understand radioactive gas-seepage observations

Abstract

An underground nuclear explosion (UNE) generates radioactive gases that can be transported through fractures to the ground surface over timescales of hours to months. If detected, the presence of particular short-lived radionuclides in the gas can provide strong evidence that a recent UNE has occurred. By drawing comparisons between sixteen similar historical U.S. UNEs where radioactive gas was or was not detected, we identified factors that control the occurrence and timing of breakthrough at the ground surface. The factors that we evaluated include the post-test atmospheric conditions, local geology, and surface geology at the UNE sites. The UNEs, all located on Pahute Mesa on the Nevada National Security Site (NNSS), had the same announced yield range (20–150 kt), similar burial depths in the unsaturated zone, and were designed and performed by the same organization during the mid-to-late 1980s. Results of the analysis indicate that breakthrough at the ground surface is largely controlled by a combination of the post-UNE barometric pressure changes in the months following the UNE, and the volume of air-filled pore space above the UNE. Conceptually simplified numerical models of each of the 16 historical UNEs that include these factors successfully predict the occurrence (5 of the UNEs)more » or lack of occurrence (remaining 11 UNEs) of post-UNE gas seepage to the ground surface. However, the data analysis and modeling indicates that estimates of the meteorological conditions and of the post-UNE, site-specific subsurface environment including air-filled porosity, in combination, may be necessary to successfully predict late-time detectable gas breakthrough for a suspected UNE site.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; USDOE National Nuclear Security Administration (NNSA). Office of Defense Nuclear Nonproliferation R&D
OSTI Identifier:
1644159
Alternate Identifier(s):
OSTI ID: 1671087
Report Number(s):
LA-UR-19-31198
Journal ID: ISSN 0265-931X; S0265931X20300199; 106297; PII: S0265931X20300199
Grant/Contract Number:  
AC52-06NA24596; 89233218CNA000001
Resource Type:
Published Article
Journal Name:
Journal of Environmental Radioactivity
Additional Journal Information:
Journal Name: Journal of Environmental Radioactivity Journal Volume: 222 Journal Issue: C; Journal ID: ISSN 0265-931X
Publisher:
Elsevier
Country of Publication:
United Kingdom
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Bourret, S. Michelle, Kwicklis, Edward M., Harp, Dylan R., Ortiz, John P., and Stauffer, Philip H. Beyond Barnwell: Applying lessons learned from the Barnwell site to other historic underground nuclear tests at Pahute Mesa to understand radioactive gas-seepage observations. United Kingdom: N. p., 2020. Web. https://doi.org/10.1016/j.jenvrad.2020.106297.
Bourret, S. Michelle, Kwicklis, Edward M., Harp, Dylan R., Ortiz, John P., & Stauffer, Philip H. Beyond Barnwell: Applying lessons learned from the Barnwell site to other historic underground nuclear tests at Pahute Mesa to understand radioactive gas-seepage observations. United Kingdom. https://doi.org/10.1016/j.jenvrad.2020.106297
Bourret, S. Michelle, Kwicklis, Edward M., Harp, Dylan R., Ortiz, John P., and Stauffer, Philip H. Thu . "Beyond Barnwell: Applying lessons learned from the Barnwell site to other historic underground nuclear tests at Pahute Mesa to understand radioactive gas-seepage observations". United Kingdom. https://doi.org/10.1016/j.jenvrad.2020.106297.
@article{osti_1644159,
title = {Beyond Barnwell: Applying lessons learned from the Barnwell site to other historic underground nuclear tests at Pahute Mesa to understand radioactive gas-seepage observations},
author = {Bourret, S. Michelle and Kwicklis, Edward M. and Harp, Dylan R. and Ortiz, John P. and Stauffer, Philip H.},
abstractNote = {An underground nuclear explosion (UNE) generates radioactive gases that can be transported through fractures to the ground surface over timescales of hours to months. If detected, the presence of particular short-lived radionuclides in the gas can provide strong evidence that a recent UNE has occurred. By drawing comparisons between sixteen similar historical U.S. UNEs where radioactive gas was or was not detected, we identified factors that control the occurrence and timing of breakthrough at the ground surface. The factors that we evaluated include the post-test atmospheric conditions, local geology, and surface geology at the UNE sites. The UNEs, all located on Pahute Mesa on the Nevada National Security Site (NNSS), had the same announced yield range (20–150 kt), similar burial depths in the unsaturated zone, and were designed and performed by the same organization during the mid-to-late 1980s. Results of the analysis indicate that breakthrough at the ground surface is largely controlled by a combination of the post-UNE barometric pressure changes in the months following the UNE, and the volume of air-filled pore space above the UNE. Conceptually simplified numerical models of each of the 16 historical UNEs that include these factors successfully predict the occurrence (5 of the UNEs) or lack of occurrence (remaining 11 UNEs) of post-UNE gas seepage to the ground surface. However, the data analysis and modeling indicates that estimates of the meteorological conditions and of the post-UNE, site-specific subsurface environment including air-filled porosity, in combination, may be necessary to successfully predict late-time detectable gas breakthrough for a suspected UNE site.},
doi = {10.1016/j.jenvrad.2020.106297},
journal = {Journal of Environmental Radioactivity},
number = C,
volume = 222,
place = {United Kingdom},
year = {2020},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.jenvrad.2020.106297

Figures / Tables:

Fig. 1 Fig. 1: Conceptualization of subsurface damage and gas migration pathways to the ground surface by barometric pumping after an UNE (from Jordan et al., 2014).

Save / Share: