DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys

Abstract

Obtaining accurate distributions of galaxy redshifts is a critical aspect of weak lensing cosmology experiments. One of the methods used to estimate and validate redshift distributions is to apply weights to a spectroscopic sample, so that their weighted photometry distribution matches the target sample. Herein, we estimate the selection bias in redshift that is introduced in this procedure. We do so by simulating the process of assembling a spectroscopic sample (including observer-assigned confidence flags) and highlight the impacts of spectroscopic target selection and redshift failures. We use the first year (Y1) weak lensing analysis in Dark Energy Survey (DES) as an example data set but the implications generalize to all similar weak lensing surveys. We find that using colour cuts that are not available to the weak lensing galaxies can introduce biases of up to Δz ~ 0.04 in the weighted mean redshift of different redshift intervals (Δz ~ 0.015 in the case most relevant to DES). To assess the impact of incompleteness in spectroscopic samples, we select only objects with high observer-defined confidence flags and compare the weighted mean redshift with the true mean. We find that the mean redshift of the DES Y1 weak lensing sample is typicallymore » biased at the Δz = 0.005–0.05 level after the weighting is applied. The bias we uncover can have either sign, depending on the samples and redshift interval considered. For the highest redshift bin, the bias is larger than the uncertainties in the other DES Y1 redshift calibration methods, justifying the decision of not using this method for the redshift estimations. We discuss several methods to mitigate this bias.« less

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [5];  [6];  [7];  [4];  [8];  [9];  [10];  [5];  [11];  [7];  [12];  [5];  [3];  [13];  [14];  [15] more »;  [15];  [16];  [17];  [18];  [19];  [3];  [20];  [21];  [22];  [23];  [24];  [25];  [8];  [26];  [15];  [27];  [15];  [23];  [28];  [16];  [23];  [29];  [21];  [15];  [30];  [31];  [32];  [33];  [34];  [15];  [3];  [35];  [8];  [36];  [37];  [21];  [38];  [8];  [33];  [21];  [37];  [20];  [20];  [4];  [15];  [39];  [23];  [4];  [40];  [41];  [42];  [22];  [43];  [15];  [6];  [6];  [44];  [45] « less
  1. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK, Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  2. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  3. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  4. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
  5. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
  6. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany, Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
  7. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA, Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  8. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil, Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  9. The Research School of Astronomy and Astrophysics, Australian National University, ACT 2601, Australia
  10. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia, Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
  11. McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
  12. Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720, USA, Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  13. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  14. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil, Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, 05314-970, Brazil
  15. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  16. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  17. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  18. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France, Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France
  19. Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
  20. Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  21. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA, National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  22. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  23. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain, Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  24. Department of Physics, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA
  25. INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy, Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy
  26. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  27. Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr 1, D-81679 Munich, Germany
  28. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  29. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA, Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  30. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  31. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  32. Center for Astrophysics |Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
  33. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  34. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
  35. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, 05314-970, Brazil, Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  36. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  37. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  38. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia, Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  39. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  40. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  41. Department of Physics, Brandeis University,415 South Street, Waltham MA 02453, USA
  42. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  43. Department of Physics, Duke University Durham, NC 27708, USA
  44. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  45. (
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); National Science Foundation (NSF)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1638777
Alternate Identifier(s):
OSTI ID: 1616311; OSTI ID: 1661213; OSTI ID: 1784539
Report Number(s):
arXiv:2003.10454; FERMILAB-PUB-20-106-AE; DES-2019-0498
Journal ID: ISSN 0035-8711
Grant/Contract Number:  
AC02-07CH11359; AST-138766; AST-1536171; AC05-00OR22725; SC0019193
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 496 Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United Kingdom
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: distance scale; galaxies: distances and redshifts; galaxies: statistics; large scale structure of Universe; gravitational lensing: weak

Citation Formats

Hartley, W. G., Chang, C., Samani, S., Carnero Rosell, A., Davis, T. M., Hoyle, B., Gruen, D., Asorey, J., Gschwend, J., Lidman, C., Kuehn, K., King, A., Rau, M. M., Wechsler, R. H., DeRose, J., Hinton, S. R., Whiteway, L., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bernstein, G. M., Bertin, E., Bridle, S. L., Brooks, D., Burke, D. L., Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Costanzi, M., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Troxel, M. A., Tucker, D. L., Varga, T. N., Weller, J., Wilkinson, R. D., and DES Collaboration). The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys. United Kingdom: N. p., 2020. Web. doi:10.1093/mnras/staa1812.
Hartley, W. G., Chang, C., Samani, S., Carnero Rosell, A., Davis, T. M., Hoyle, B., Gruen, D., Asorey, J., Gschwend, J., Lidman, C., Kuehn, K., King, A., Rau, M. M., Wechsler, R. H., DeRose, J., Hinton, S. R., Whiteway, L., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bernstein, G. M., Bertin, E., Bridle, S. L., Brooks, D., Burke, D. L., Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Costanzi, M., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Troxel, M. A., Tucker, D. L., Varga, T. N., Weller, J., Wilkinson, R. D., & DES Collaboration). The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys. United Kingdom. https://doi.org/10.1093/mnras/staa1812
Hartley, W. G., Chang, C., Samani, S., Carnero Rosell, A., Davis, T. M., Hoyle, B., Gruen, D., Asorey, J., Gschwend, J., Lidman, C., Kuehn, K., King, A., Rau, M. M., Wechsler, R. H., DeRose, J., Hinton, S. R., Whiteway, L., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bernstein, G. M., Bertin, E., Bridle, S. L., Brooks, D., Burke, D. L., Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Costanzi, M., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Troxel, M. A., Tucker, D. L., Varga, T. N., Weller, J., Wilkinson, R. D., and DES Collaboration). Sat . "The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys". United Kingdom. https://doi.org/10.1093/mnras/staa1812.
@article{osti_1638777,
title = {The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys},
author = {Hartley, W. G. and Chang, C. and Samani, S. and Carnero Rosell, A. and Davis, T. M. and Hoyle, B. and Gruen, D. and Asorey, J. and Gschwend, J. and Lidman, C. and Kuehn, K. and King, A. and Rau, M. M. and Wechsler, R. H. and DeRose, J. and Hinton, S. R. and Whiteway, L. and Abbott, T. M. C. and Aguena, M. and Allam, S. and Annis, J. and Avila, S. and Bernstein, G. M. and Bertin, E. and Bridle, S. L. and Brooks, D. and Burke, D. L. and Kind, M. Carrasco and Carretero, J. and Castander, F. J. and Cawthon, R. and Costanzi, M. and da Costa, L. N. and Desai, S. and Diehl, H. T. and Dietrich, J. P. and Flaugher, B. and Fosalba, P. and Frieman, J. and García-Bellido, J. and Gaztanaga, E. and Gerdes, D. W. and Gruendl, R. A. and Gutierrez, G. and Hollowood, D. L. and Honscheid, K. and James, D. J. and Kent, S. and Krause, E. and Kuropatkin, N. and Lahav, O. and Lima, M. and Maia, M. A. G. and Marshall, J. L. and Melchior, P. and Menanteau, F. and Miquel, R. and Ogando, R. L. C. and Palmese, A. and Paz-Chinchón, F. and Plazas, A. A. and Roodman, A. and Rykoff, E. S. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Serrano, S. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Suchyta, E. and Tarle, G. and Troxel, M. A. and Tucker, D. L. and Varga, T. N. and Weller, J. and Wilkinson, R. D. and DES Collaboration)},
abstractNote = {Obtaining accurate distributions of galaxy redshifts is a critical aspect of weak lensing cosmology experiments. One of the methods used to estimate and validate redshift distributions is to apply weights to a spectroscopic sample, so that their weighted photometry distribution matches the target sample. Herein, we estimate the selection bias in redshift that is introduced in this procedure. We do so by simulating the process of assembling a spectroscopic sample (including observer-assigned confidence flags) and highlight the impacts of spectroscopic target selection and redshift failures. We use the first year (Y1) weak lensing analysis in Dark Energy Survey (DES) as an example data set but the implications generalize to all similar weak lensing surveys. We find that using colour cuts that are not available to the weak lensing galaxies can introduce biases of up to Δz ~ 0.04 in the weighted mean redshift of different redshift intervals (Δz ~ 0.015 in the case most relevant to DES). To assess the impact of incompleteness in spectroscopic samples, we select only objects with high observer-defined confidence flags and compare the weighted mean redshift with the true mean. We find that the mean redshift of the DES Y1 weak lensing sample is typically biased at the Δz = 0.005–0.05 level after the weighting is applied. The bias we uncover can have either sign, depending on the samples and redshift interval considered. For the highest redshift bin, the bias is larger than the uncertainties in the other DES Y1 redshift calibration methods, justifying the decision of not using this method for the redshift estimations. We discuss several methods to mitigate this bias.},
doi = {10.1093/mnras/staa1812},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 496,
place = {United Kingdom},
year = {Sat Jun 27 00:00:00 EDT 2020},
month = {Sat Jun 27 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1093/mnras/staa1812

Save / Share:

Works referenced in this record:

OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release
journal, July 2017

  • Childress, M. J.; Lidman, C.; Davis, T. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 1
  • DOI: 10.1093/mnras/stx1872

Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross‐Correlations
journal, September 2008

  • Newman, Jeffrey A.
  • The Astrophysical Journal, Vol. 684, Issue 1
  • DOI: 10.1086/589982

CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions
journal, March 2013

  • Benjamin, Jonathan; Van Waerbeke, Ludovic; Heymans, Catherine
  • Monthly Notices of the Royal Astronomical Society, Vol. 431, Issue 2
  • DOI: 10.1093/mnras/stt276

The Sdss-Iv Extended Baryon Oscillation Spectroscopic Survey: Overview and Early data
journal, February 2016

  • Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.
  • The Astronomical Journal, Vol. 151, Issue 2
  • DOI: 10.3847/0004-6256/151/2/44

The VIMOS VLT deep survey: First epoch VVDS-deep survey: 11 564 spectra with 17.5 
journal, August 2005


Precision photometric redshift calibration for galaxy–galaxy weak lensing
journal, May 2008


Correcting cosmological parameter biases for all redshift surveys induced by estimating and reweighting redshift distributions
journal, December 2016

  • Rau, Markus Michael; Hoyle, Ben; Paech, Kerstin
  • Monthly Notices of the Royal Astronomical Society, Vol. 466, Issue 3
  • DOI: 10.1093/mnras/stw3338

Self-organized formation of topologically correct feature maps
journal, January 1982


Marz: Manual and automatic redshifting software
journal, April 2016


The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6
journal, April 2015


Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements
journal, August 2014

  • Cunha, Carlos E.; Huterer, Dragan; Lin, Huan
  • Monthly Notices of the Royal Astronomical Society, Vol. 444, Issue 1
  • DOI: 10.1093/mnras/stu1424

CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys
journal, September 2016

  • Choi, A.; Heymans, C.; Blake, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 463, Issue 4
  • DOI: 10.1093/mnras/stw2241

Hierarchical Modeling and Statistical Calibration for Photometric Redshifts
journal, August 2019

  • Leistedt, Boris; Hogg, David W.; Wechsler, Risa H.
  • The Astrophysical Journal, Vol. 881, Issue 1
  • DOI: 10.3847/1538-4357/ab2d29

The dark Energy Camera
journal, October 2015


ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1 < z < 4
journal, August 2018

  • Forrest, Ben; Tran, Kim-Vy H.; Broussard, Adam
  • The Astrophysical Journal, Vol. 863, Issue 2
  • DOI: 10.3847/1538-4357/aad232

Redshift inference from the combination of galaxy colours and clustering in a hierarchical Bayesian model
journal, November 2018

  • Sánchez, Carles; Bernstein, Gary M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 2
  • DOI: 10.1093/mnras/sty3222

The DEIMOS spectrograph for the Keck II Telescope: integration and testing
conference, March 2003

  • Faber, Sandra M.; Phillips, Andrew C.; Kibrick, Robert I.
  • Astronomical Telescopes and Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.460346

The cosmological simulation code gadget-2
journal, December 2005


The Deep2 Galaxy Redshift Survey: Design, Observations, data Reduction, and Redshifts
journal, August 2013

  • Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc
  • The Astrophysical Journal Supplement Series, Vol. 208, Issue 1
  • DOI: 10.1088/0067-0049/208/1/5

The Arizona CDFS Environment Survey (ACES): A Magellan/IMACS Spectroscopic Survey of the Chandra Deep Field-South: Arizona CDFS Environment Survey (ACES)
journal, August 2012


CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments
journal, May 2013

  • Heymans, Catherine; Grocutt, Emma; Heavens, Alan
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 3
  • DOI: 10.1093/mnras/stt601

Forward modeling of spectroscopic galaxy surveys: application to SDSS
journal, November 2018

  • Fagioli, Martina; Riebartsch, Julian; Nicola, Andrina
  • Journal of Cosmology and Astroparticle Physics, Vol. 2018, Issue 11
  • DOI: 10.1088/1475-7516/2018/11/015

Spectroscopic needs for imaging dark energy experiments
journal, March 2015


The first and second data releases of the Kilo-Degree Survey
journal, October 2015

  • de Jong, Jelte T. A.; Verdoes Kleijn, Gijs A.; Boxhoorn, Danny R.
  • Astronomy & Astrophysics, Vol. 582
  • DOI: 10.1051/0004-6361/201526601

Photometric redshift analysis in the Dark Energy Survey Science Verification data
journal, October 2014

  • Sánchez, C.; Carrasco Kind, M.; Lin, H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 445, Issue 2
  • DOI: 10.1093/mnras/stu1836

The redshift distribution of cosmological samples: a forward modeling approach
journal, August 2017

  • Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam
  • Journal of Cosmology and Astroparticle Physics, Vol. 2017, Issue 08
  • DOI: 10.1088/1475-7516/2017/08/035

zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field
journal, September 2007

  • Lilly, S. J.; Fevre, O. Le; Renzini, A.
  • The Astrophysical Journal Supplement Series, Vol. 172, Issue 1
  • DOI: 10.1086/516589

EZ: A Tool For Automatic Redshift Measurement
journal, July 2010

  • Garilli, B.; Fumana, M.; Franzetti, P.
  • Publications of the Astronomical Society of the Pacific, Vol. 122, Issue 893
  • DOI: 10.1086/654903

THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE
journal, September 2009

  • Lilly, Simon J.; Le Brun, Vincent; Maier, Christian
  • The Astrophysical Journal Supplement Series, Vol. 184, Issue 2
  • DOI: 10.1088/0067-0049/184/2/218

Improved photometric redshifts via enhanced estimates of system response, galaxy templates and magnitude priors
journal, March 2013

  • Schmidt, S. J.; Thorman, P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 431, Issue 3
  • DOI: 10.1093/mnras/stt373

The VIMOS Public Extragalactic Redshift Survey (VIPERS): Science Highlights and Final Data Release
text, January 2017


Estimating the redshift distribution of photometric galaxy samples
journal, October 2008


The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1
journal, May 2017

  • Masters, Daniel C.; Stern, Daniel K.; Cohen, Judith G.
  • The Astrophysical Journal, Vol. 841, Issue 2
  • DOI: 10.3847/1538-4357/aa6f08

The Prism Multi-Object Survey (Primus). ii. data Reduction and Redshift Fitting
journal, April 2013


Accurate photometric redshift probability density estimation – method comparison and application
journal, August 2015

  • Rau, Markus Michael; Seitz, Stella; Brimioulle, Fabrice
  • Monthly Notices of the Royal Astronomical Society, Vol. 452, Issue 4
  • DOI: 10.1093/mnras/stv1567

CFHTLenS: improving the quality of photometric redshifts with precision photometry★: CFHTLenS: photometric redshifts
journal, February 2012


Bayesian Photometric Redshift Estimation
journal, June 2000

  • Benitez, Narciso
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/308947

The WIRCam Deep Survey: I. Counts, colours, and mass-functions derived from near-infrared imaging in the CFHTLS deep fields⋆
journal, August 2012


The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to z spec ~ 6 in CANDELS
journal, April 2017


CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics
journal, October 2016

  • Joudaki, Shahab; Blake, Chris; Heymans, Catherine
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 2
  • DOI: 10.1093/mnras/stw2665

Transients from initial conditions in cosmological simulations
journal, November 2006


DES science portal: Computing photometric redshifts
journal, October 2018


3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE
journal, May 2012

  • Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn
  • The Astrophysical Journal Supplement Series, Vol. 200, Issue 2
  • DOI: 10.1088/0067-0049/200/2/13

Commissioning and performances of the VLT-VIMOS
conference, March 2003

  • LeFevre, Oliver; Saisse, Michel; Mancini, Dario
  • Astronomical Telescopes and Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.460959

The Vimos VLT deep survey: Global properties of 20 000 galaxies in the
journal, June 2008


The identification of post-starburst galaxies at z ∼ 1 using multiwavelength photometry: a spectroscopic verification
journal, April 2016

  • Maltby, David T.; Almaini, Omar; Wild, Vivienne
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 459, Issue 1
  • DOI: 10.1093/mnrasl/slw057

The Cosmic Evolution Survey (COSMOS): Overview
journal, September 2007

  • Scoville, N.; Aussel, H.; Brusa, M.
  • The Astrophysical Journal Supplement Series, Vol. 172, Issue 1
  • DOI: 10.1086/516585

Sample variance in photometric redshift calibration: cosmological biases and survey requirements: Sample variance in photo-z calibration
journal, April 2012

  • Cunha, Carlos E.; Huterer, Dragan; Busha, Michael T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 423, Issue 1
  • DOI: 10.1111/j.1365-2966.2012.20927.x

Studying the emergence of the red sequence through galaxy clustering: host halo masses at z > 2
journal, April 2013

  • Hartley, W. G.; Almaini, O.; Mortlock, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 431, Issue 4
  • DOI: 10.1093/mnras/stt383

Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing
journal, August 2019

  • Buchs, R.; Davis, C.; Gruen, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 1
  • DOI: 10.1093/mnras/stz2162

Photometric redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1
journal, October 2017

  • Tanaka, Masayuki; Coupon, Jean; Hsieh, Bau-Ching
  • Publications of the Astronomical Society of Japan, Vol. 70, Issue SP1
  • DOI: 10.1093/pasj/psx077

Estimating redshift distributions using hierarchical logistic Gaussian processes
journal, November 2019

  • Rau, Markus Michael; Wilson, Simon; Mandelbaum, Rachel
  • Monthly Notices of the Royal Astronomical Society, Vol. 491, Issue 4
  • DOI: 10.1093/mnras/stz3295

THE EVOLUTION OF METALLICITY AND METALLICITY GRADIENTS FROM z = 2.7 TO 0.6 WITH KMOS 3D
journal, August 2016


DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting
journal, April 2016

  • De Vicente, J.; Sánchez, E.; Sevilla-Noarbe, I.
  • Monthly Notices of the Royal Astronomical Society, Vol. 459, Issue 3
  • DOI: 10.1093/mnras/stw857

Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
journal, April 2018

  • Hoyle, B.; Gruen, D.; Bernstein, G. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 478, Issue 1
  • DOI: 10.1093/mnras/sty957

Mapping the Galaxy Color–Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys
journal, October 2015


THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. IV. EXCITATION STATE AND CHEMICAL ENRICHMENT OF THE INTERSTELLAR MEDIUM
journal, January 2017


The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2
journal, May 2019

  • Masters, Daniel C.; Stern, Daniel K.; Cohen, Judith G.
  • The Astrophysical Journal, Vol. 877, Issue 2
  • DOI: 10.3847/1538-4357/ab184d

The VIMOS Public Extragalactic Survey (VIPERS): First Data Release of 57 204 spectroscopic measurements
journal, January 2014


Selection biases in empirical p(z) methods for weak lensing
journal, February 2017

  • Gruen, D.; Brimioulle, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 1
  • DOI: 10.1093/mnras/stx471