DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals

Abstract

Design and processing of advanced lightweight structural alloys based on magnesium and titanium rely critically on a control over twinning which, however, remains elusive to date and is dependent on an explicit understanding on the twinning nucleation mechanism in hexagonal close-packed (HCP) crystals. Here, by using in-situ high resolution transmission electron microscopy, we directly reveal a “dual-step” twinning nucleation mechanism in HCP rhenium nanocrystals. It is found that nucleation of the predominant {10 -12} twinning is initiated by disconnections on the Prismatic¦Basal interfaces which establish the lattice correspondence of the twin with a minor deviation from the ideal orientation. Subsequently, the minor deviation is corrected by the formation of coherent twin boundaries through rearrangement of the disconnections on the Prismatic¦Basal interface; thereafter, the coherent twin boundaries propagate by twinning disconnections. The findings provide much-needed high-resolution evidences to the twinning nucleation mechanism in HCP crystals, with crucial implications for engineering advanced structural alloys.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [1]
  1. Univ. of Pittsburgh, PA (United States)
  2. Univ. of Nevada, Reno (NV)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF)
OSTI Identifier:
1638496
Report Number(s):
PNNL-SA-152795
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
AC05-76RL01830; DMR 1808046; CMMI 1635088
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 11; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Metals and alloys; structural properties

Citation Formats

He, Yang, Li, Bin, Wang, Chongmin, and Mao, Scott X. Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals. United States: N. p., 2020. Web. doi:10.1038/s41467-020-16351-0.
He, Yang, Li, Bin, Wang, Chongmin, & Mao, Scott X. Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals. United States. https://doi.org/10.1038/s41467-020-16351-0
He, Yang, Li, Bin, Wang, Chongmin, and Mao, Scott X. Mon . "Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals". United States. https://doi.org/10.1038/s41467-020-16351-0. https://www.osti.gov/servlets/purl/1638496.
@article{osti_1638496,
title = {Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals},
author = {He, Yang and Li, Bin and Wang, Chongmin and Mao, Scott X.},
abstractNote = {Design and processing of advanced lightweight structural alloys based on magnesium and titanium rely critically on a control over twinning which, however, remains elusive to date and is dependent on an explicit understanding on the twinning nucleation mechanism in hexagonal close-packed (HCP) crystals. Here, by using in-situ high resolution transmission electron microscopy, we directly reveal a “dual-step” twinning nucleation mechanism in HCP rhenium nanocrystals. It is found that nucleation of the predominant {10 -12} twinning is initiated by disconnections on the Prismatic¦Basal interfaces which establish the lattice correspondence of the twin with a minor deviation from the ideal orientation. Subsequently, the minor deviation is corrected by the formation of coherent twin boundaries through rearrangement of the disconnections on the Prismatic¦Basal interface; thereafter, the coherent twin boundaries propagate by twinning disconnections. The findings provide much-needed high-resolution evidences to the twinning nucleation mechanism in HCP crystals, with crucial implications for engineering advanced structural alloys.},
doi = {10.1038/s41467-020-16351-0},
journal = {Nature Communications},
number = 1,
volume = 11,
place = {United States},
year = {Mon May 18 00:00:00 EDT 2020},
month = {Mon May 18 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten
journal, March 2015

  • Wang, Jiangwei; Zeng, Zhi; Weinberger, Christopher R.
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4228

Achieving High Strength and Ductility in Magnesium Alloys via Densely Hierarchical Double Contraction Nanotwins
journal, September 2017


(1¯012) Twinning nucleation mechanisms in hexagonal-close-packed crystals
journal, October 2009


The crystallography and core structure of twinning dislocations in H.C.P. metals
journal, December 1988


Lattice correspondence during twinning in hexagonal close-packed crystals
journal, October 2010


On the importance of prismatic/basal interfaces in the growth of twins in hexagonal close packed crystals
journal, June 2013


Twinning with zero twinning shear
journal, December 2016


Deformation twinning in nanocrystalline materials
journal, January 2012


Revealing the Maximum Strength in Nanotwinned Copper
journal, January 2009


Non-classical Twinning Behavior in Dynamically Deformed Cobalt
journal, April 2015


Characterization of basal-prismatic interface of twin in deformed titanium by high-resolution transmission electron microscopy
journal, March 2015


Breakdown of the Schmid law in homogeneous and heterogeneous nucleation events of slip and twinning in magnesium
journal, December 2012

  • Barrett, C. D.; El Kadiri, Haitham; Tschopp, M. A.
  • Journal of the Mechanics and Physics of Solids, Vol. 60, Issue 12
  • DOI: 10.1016/j.jmps.2012.06.015

Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation
journal, July 2016


Investigation of {10 1 2} twins in Zn using high-resolution electron microscopy: Interfacial defects and interactions
journal, April 1997


The origins of high hardening and low ductility in magnesium
journal, September 2015


Twin boundary interactions with grain boundaries investigated in pure rhenium
journal, December 2014


Comment on “Atomic Shuffling Dominated Mechanism For Deformation Twinning In Magnesium”
journal, January 2010


XXXVIII. Twin formation, in cadmium
journal, April 1952

  • Thompson, N.; Millard, D. J.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 43, Issue 339
  • DOI: 10.1080/14786440408520175

Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals
journal, December 2007

  • Shan, Z. W.; Mishra, Raja K.; Syed Asif, S. A.
  • Nature Materials, Vol. 7, Issue 2
  • DOI: 10.1038/nmat2085

Dislocation Dissociations in hcp Metals
journal, April 1970


Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries
journal, May 2013


On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals
journal, June 2015

  • Britton, T. B.; Dunne, F. P. E.; Wilkinson, A. J.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 471, Issue 2178
  • DOI: 10.1098/rspa.2014.0881

Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy
journal, February 2017

  • Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14390

Atomic Structure Analysis of the (101 2) Twin in Zinc by HREM and Energetical Calculations
journal, October 1995

  • Braisaz, T.; Ruterana, P.; Lebouvier, B.
  • physica status solidi (b), Vol. 191, Issue 2
  • DOI: 10.1002/pssb.2221910204

Structural characterization of {101¯2} twin boundaries in cobalt
journal, July 2013

  • Tu, Jian; Zhang, Xiyan; Wang, Jian
  • Applied Physics Letters, Vol. 103, Issue 5
  • DOI: 10.1063/1.4817180

Rhenium - A Unique Rare Metal
journal, November 1994


Atomic Shuffling Dominated Mechanism for Deformation Twinning in Magnesium
journal, July 2009


HREM investigation of twin boundary and interface defects in deformed polycrystalline cobalt
journal, May 2013


Atomic shearing and shuffling accompanying the motion of twinning disconnections in Zirconium
journal, April 2013


Statistical analyses of deformation twinning in magnesium
journal, May 2010


The roles of grain boundary dislocations and disclinations in the nucleation of {102} twinning
journal, January 2014


Analysis of dissociation of 〈 c 〉 and 〈 c + a 〉 dislocations to nucleate $(1\,0\,\bar{1}\,2)$ twins in Mg
journal, May 2013

  • Ghazisaeidi, M.; Curtin, W. A.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 5
  • DOI: 10.1088/0965-0393/21/5/055007

Radiation damage in the TEM and SEM
journal, August 2004


Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium
journal, April 2015


Deformation twinning
journal, January 1995


Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation
journal, January 2008


Large plasticity in magnesium mediated by pyramidal dislocations
journal, July 2019


Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading–unloading
journal, December 2003


Impact of deformation faceting on <mml:math altimg="si24.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>2</mml:mn><mml:mo stretchy="false">}</mml:mo><mml:mtext>,</mml:mtext><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>1</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math> and <mml:math altimg="si25.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>3</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math> embryonic twin nucleation in hexagonal close-packed metals
journal, May 2014


Slip, twinning, and fracture in hexagonal close-packed metals
journal, March 1981


Strain fields and energies of grain boundary triple junctions
journal, November 2008


The Nanostructured Origin of Deformation Twinning
journal, January 2012

  • Yu, Qian; Qi, Liang; Chen, Kai
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203937t

Disconnections and other defects associated with twin interfaces
journal, October 2016


Pure-Shuffle Nucleation of Deformation Twins in Hexagonal-Close-Packed Metals
journal, September 2013


Strong crystal size effect on deformation twinning
journal, January 2010


Interfacial structure of { 1 0 1 2 } twin tip in deformed magnesium alloy
journal, November 2014


Quantitative measurement of displacement and strain fields from HREM micrographs
journal, August 1998


Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31
journal, May 2009

  • Proust, Gwénaëlle; Tomé, Carlos N.; Jain, Ashutosh
  • International Journal of Plasticity, Vol. 25, Issue 5
  • DOI: 10.1016/j.ijplas.2008.05.005

Nucleation and growth of twins in Zr: A statistical study
journal, December 2009


Twinning-like lattice reorientation without a crystallographic twinning plane
journal, February 2014

  • Liu, Bo-Yu; Wang, Jian; Li, Bin
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4297

Growth Twins and Deformation Twins in Metals
journal, July 2014


Sample Dimensions Influence Strength and Crystal Plasticity
journal, August 2004