DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron tomography imaging methods with diffraction contrast for materials research

Abstract

Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable the visualization of three-dimensional (3D) microstructures ranging from atomic to micrometer scales using 3D reconstruction techniques based on computed tomography algorithms. This 3D microscopy method is called electron tomography (ET) and has been utilized in the fields of materials science and engineering for more than two decades. Although atomic resolution is one of the current topics in ET research, the development and deployment of intermediate-resolution (non-atomic-resolution) ET imaging methods have garnered considerable attention from researchers. This research trend is probably not irrelevant due to the fact that the spatial resolution and functionality of 3D imaging methods of scanning electron microscopy (SEM) and X-ray microscopy have come to overlap with those of ET. In other words, there may be multiple ways to carry out 3D visualization using different microscopy methods for nanometer-scale objects in materials. From the above standpoint, this review paper aims to (i) describe the current status and issues of intermediate-resolution ET with regard to enhancing the effectiveness of TEM/STEM imaging and (ii) discuss promising applications of state-of-the-art intermediate-resolution ET for materials research with a particular focus on diffraction contrast ET for crystalline microstructures (superlattice domains and dislocations)more » including a demonstration of in situ dislocation tomography.« less

Authors:
 [1];  [2];  [3];  [4];  [2];  [5];  [2];  [6];  [7];  [8];  [3];  [9];  [10];  [8];  [8];  [4];  [8]
  1. Kyushu Univ., Fukuoka (Japan). Ultramicroscopy Research Center; Kyushu Univ., Fukuoka (Japan). Dept. of Advanced Materials Science
  2. System in Fronteir, Inc., Tokyo (Japan)
  3. Research Lab., Mel-Build Corp., Fukuoka (Japan)
  4. Steel Research Lab., Nippon Steel Corp., Chiba (Japan)
  5. Hokkaido Univ. (Japan)
  6. Toray Research Center, Inc., Shiga (Japan). Morphological Research Lab.
  7. Kyushu Univ., Fukuoka (Japan). Ultramicroscopy Research Center; Kyushi Univ., Fukuoka (Japan). Dept. of Applied Quantum Physics and Nuclear Engineering
  8. Kyushu Univ., Fukuoka (Japan). Dept. of Advanced Materials Science
  9. Research Lab., Mel-Build Corp., Fukuoka (Japan); Analytical Instruments, Materials and Structural Analysis, Thermo Fisher Scientific, Tokyo (Japan)
  10. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kyushu Univ., Fukuoka (Japan). Inst. for Materials Chemistry and Engineering
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE; Japan Society for the Promotion of Science (JSPS) Ministry of Education, Culture, Sports, Science, and Technology (MEXT); Japan Science and Technology Agency (JST)
OSTI Identifier:
1638487
Grant/Contract Number:  
JPMJCR18J4; JP18H05479; JP18K18954; JP25286027; JP22360267; JP22310068; JP22102002; JP18681019; JP15360336; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Microscopy
Additional Journal Information:
Journal Volume: 69; Journal Issue: 3; Journal ID: ISSN 2050-5698
Publisher:
Oxford University Press
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Electron tomography; three-dimensional (3D); diffraction contrast; domain structure; dislocation; specimen holder

Citation Formats

Hata, Satoshi, Furukawa, Hiromitsu, Gondo, Takashi, Hirakami, Daisuke, Horii, Noritaka, Ikeda, Ken-Ichi, Kawamoto, Katsumi, Kimura, Kosuke, Matsumura, Syo, Mitsuhara, Masatoshi, Miyazaki, Hiroya, Miyazaki, Shinsuke, Murayama, Mitsu Mitsuhiro, Nakashima, Hideharu, Saito, Hikaru, Sakamoto, Masashi, and Yamasaki, Shigeto. Electron tomography imaging methods with diffraction contrast for materials research. United States: N. p., 2020. Web. doi:10.1093/jmicro/dfaa002.
Hata, Satoshi, Furukawa, Hiromitsu, Gondo, Takashi, Hirakami, Daisuke, Horii, Noritaka, Ikeda, Ken-Ichi, Kawamoto, Katsumi, Kimura, Kosuke, Matsumura, Syo, Mitsuhara, Masatoshi, Miyazaki, Hiroya, Miyazaki, Shinsuke, Murayama, Mitsu Mitsuhiro, Nakashima, Hideharu, Saito, Hikaru, Sakamoto, Masashi, & Yamasaki, Shigeto. Electron tomography imaging methods with diffraction contrast for materials research. United States. https://doi.org/10.1093/jmicro/dfaa002
Hata, Satoshi, Furukawa, Hiromitsu, Gondo, Takashi, Hirakami, Daisuke, Horii, Noritaka, Ikeda, Ken-Ichi, Kawamoto, Katsumi, Kimura, Kosuke, Matsumura, Syo, Mitsuhara, Masatoshi, Miyazaki, Hiroya, Miyazaki, Shinsuke, Murayama, Mitsu Mitsuhiro, Nakashima, Hideharu, Saito, Hikaru, Sakamoto, Masashi, and Yamasaki, Shigeto. Mon . "Electron tomography imaging methods with diffraction contrast for materials research". United States. https://doi.org/10.1093/jmicro/dfaa002. https://www.osti.gov/servlets/purl/1638487.
@article{osti_1638487,
title = {Electron tomography imaging methods with diffraction contrast for materials research},
author = {Hata, Satoshi and Furukawa, Hiromitsu and Gondo, Takashi and Hirakami, Daisuke and Horii, Noritaka and Ikeda, Ken-Ichi and Kawamoto, Katsumi and Kimura, Kosuke and Matsumura, Syo and Mitsuhara, Masatoshi and Miyazaki, Hiroya and Miyazaki, Shinsuke and Murayama, Mitsu Mitsuhiro and Nakashima, Hideharu and Saito, Hikaru and Sakamoto, Masashi and Yamasaki, Shigeto},
abstractNote = {Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable the visualization of three-dimensional (3D) microstructures ranging from atomic to micrometer scales using 3D reconstruction techniques based on computed tomography algorithms. This 3D microscopy method is called electron tomography (ET) and has been utilized in the fields of materials science and engineering for more than two decades. Although atomic resolution is one of the current topics in ET research, the development and deployment of intermediate-resolution (non-atomic-resolution) ET imaging methods have garnered considerable attention from researchers. This research trend is probably not irrelevant due to the fact that the spatial resolution and functionality of 3D imaging methods of scanning electron microscopy (SEM) and X-ray microscopy have come to overlap with those of ET. In other words, there may be multiple ways to carry out 3D visualization using different microscopy methods for nanometer-scale objects in materials. From the above standpoint, this review paper aims to (i) describe the current status and issues of intermediate-resolution ET with regard to enhancing the effectiveness of TEM/STEM imaging and (ii) discuss promising applications of state-of-the-art intermediate-resolution ET for materials research with a particular focus on diffraction contrast ET for crystalline microstructures (superlattice domains and dislocations) including a demonstration of in situ dislocation tomography.},
doi = {10.1093/jmicro/dfaa002},
journal = {Microscopy},
number = 3,
volume = 69,
place = {United States},
year = {2020},
month = {3}
}

Works referenced in this record:

Recent Advances in Electron Tomography: TEM and HAADF-STEM Tomography for Materials Science and Semiconductor Applications
journal, September 2005

  • Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco
  • Microscopy and Microanalysis, Vol. 11, Issue 5, p. 378-400
  • DOI: 10.1017/S1431927605050361

Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials
journal, November 2012


Empirical determination of transmission attenuation curves in mass–thickness contrast TEM imaging
journal, May 2019


Three-Dimensional Observation of Magnetic Vortex Cores in Stacked Ferromagnetic Discs
journal, January 2015

  • Tanigaki, Toshiaki; Takahashi, Yoshio; Shimakura, Tomokazu
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504473a

Three-dimensional shapes and distribution of FePd nanoparticles observed by electron tomography using high-angle annular dark-field scanning transmission electron microscopy
journal, January 2010

  • Sato, Kazuhisa; Aoyagi, Kenta; Konno, Toyohiko J.
  • Journal of Applied Physics, Vol. 107, Issue 2
  • DOI: 10.1063/1.3280026

Insights into image contrast from dislocations in ADF-STEM
journal, May 2019


Scanning electron microscope observation of dislocations in semiconductor and metal materials
journal, June 2010

  • Kuwano, N.; Itakura, M.; Nagatomo, Y.
  • Journal of Electron Microscopy, Vol. 59, Issue S1
  • DOI: 10.1093/jmicro/dfq045

Electron microscopy analysis for crack propagation behavior of alumina
journal, March 2010


Fundamental concepts of stem imaging
journal, January 1981


Microstructural evolution and deformation behavior of Al-Cu alloys: A Transmission X-ray Microscopy (TXM) and micropillar compression study
journal, February 2018


Spectroscopic electron tomography
journal, September 2003


Toward quantitative core-loss EFTEM tomography
journal, July 2011


Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment
journal, December 2018


Exploring different inelastic projection mechanisms for electron tomography
journal, July 2011


Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution
journal, March 2013

  • Chen, Chien-Chun; Zhu, Chun; White, Edward R.
  • Nature, Vol. 496, Issue 7443
  • DOI: 10.1038/nature12009

Stereo-vision three-dimensional reconstruction of curvilinear structures imaged with a TEM
journal, January 2018


Three-Dimensional Morphology of Iron Oxide Nanoparticles with Reactive Concave Surfaces. A Compressed Sensing-Electron Tomography (CS-ET) Approach
journal, November 2011

  • Saghi, Zineb; Holland, Daniel J.; Leary, Rowan
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202253a

Towards bend-contour-free dislocation imaging via diffraction contrast STEM
journal, October 2018


Quantitative Three-Dimensional Reconstruction of Catalyst Particles for Bamboo-like Carbon Nanotubes
journal, December 2007

  • Bals, Sara; Batenburg, K. Joost; Verbeeck, Jo
  • Nano Letters, Vol. 7, Issue 12
  • DOI: 10.1021/nl071899m

3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM
journal, July 2006


Quantitative EDXS: Influence of geometry on a four detector system
journal, January 2017


Hardening mechanisms in olivine single crystal deformed at 1090 °C: an electron tomography study
journal, September 2017


Metallurgical Investigations with a 500 kV Electron Microscope
journal, February 1967

  • Fujita, Hiroshi; Kawasaki, Yōzō; Furubayashi, Ei-ichi
  • Japanese Journal of Applied Physics, Vol. 6, Issue 2
  • DOI: 10.1143/JJAP.6.214

Recent advances in Lorentz microscopy
journal, April 2016

  • Phatak, C.; Petford-Long, A. K.; De Graef, M.
  • Current Opinion in Solid State and Materials Science, Vol. 20, Issue 2
  • DOI: 10.1016/j.cossms.2016.01.002

Three-Dimensional Elemental Mapping at the Atomic Scale in Bimetallic Nanocrystals
journal, August 2013

  • Goris, Bart; De Backer, Annick; Van Aert, Sandra
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl401945b

Improvement of effective solid angle using virtual-pivot holder and large EDS detector
journal, February 2017


In situ and tomographic characterization of damage and dislocation processes in irradiated metallic alloys by transmission electron microscopy
journal, February 2015

  • Kacher, Josh; Cui, Bai; Robertson, Ian M.
  • Journal of Materials Research, Vol. 30, Issue 9
  • DOI: 10.1557/jmr.2015.14

Three-dimensional Visualization of Lattice Defects by Electron Tomography [電子線トモグラフィーによる格子欠陥の 3 次元可視化]
journal, January 2010

  • Hata, Satoshi; Mitsuhara, Masatoshi; Tanaka, Masaki
  • Materia Japan, Vol. 49, Issue 6
  • DOI: 10.2320/materia.49.274

Three-dimensional X-ray diffraction imaging of dislocations in polycrystalline metals under tensile loading
journal, September 2018

  • Cherukara, Mathew J.; Pokharel, Reeju; O’Leary, Timothy S.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06166-5

3D visualization of dislocation arrangement using scanning electron microscope serial sectioning method
journal, May 2015


Atomic resolution electron microscopy in a magnetic field free environment
journal, May 2019


4D Electron Tomography
journal, June 2010


High-Resolution Three-Dimensional Imaging of Dislocations
journal, July 2006


A novel 3D absorption correction method for quantitative EDX-STEM tomography
journal, January 2016


Three-Dimensional Orientation Microscopy in a Focused Ion Beam–Scanning Electron Microscope: A New Dimension of Microstructure Characterization
journal, January 2008

  • Zaefferer, S.; Wright, S. I.; Raabe, D.
  • Metallurgical and Materials Transactions A, Vol. 39, Issue 2
  • DOI: 10.1007/s11661-007-9418-9

XEDS STEM tomography for 3D chemical characterization of nanoscale particles
journal, August 2013


3D imaging of nanomaterials by discrete tomography
journal, May 2009


STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation
journal, March 2016


Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles
journal, October 2013

  • Nicoletti, Olivia; de la Peña, Francisco; Leary, Rowan K.
  • Nature, Vol. 502, Issue 7469
  • DOI: 10.1038/nature12469

Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel
journal, November 2012


Compressed sensing electron tomography
journal, August 2013


Dislocation electron tomography and precession electron diffraction – minimising the effects of dynamical interactions in real and reciprocal space
journal, December 2010


Three-dimensional characterization of interaction between β″ precipitate and dislocation in Al–Mg–Si alloy
journal, July 2014


Three-dimensional atomic imaging of crystalline nanoparticles
journal, February 2011

  • Van Aert, Sandra; Batenburg, Kees J.; Rossell, Marta D.
  • Nature, Vol. 470, Issue 7334
  • DOI: 10.1038/nature09741

Point Defect Clusters and Dislocations in FIB Irradiated Nanocrystalline Aluminum Films: An Electron Tomography and Aberration-Corrected High-Resolution ADF-STEM Study
journal, October 2011

  • Idrissi, Hosni; Turner, Stuart; Mitsuhara, Masatoshi
  • Microscopy and Microanalysis, Vol. 17, Issue 6
  • DOI: 10.1017/S143192761101213X

Three-dimensional coordinates of individual atoms in materials revealed by electron tomography
journal, September 2015

  • Xu, Rui; Chen, Chien-Chun; Wu, Li
  • Nature Materials, Vol. 14, Issue 11
  • DOI: 10.1038/nmat4426

Tilt-less 3-D electron imaging and reconstruction of complex curvilinear structures
journal, September 2017


Electron tomography at 2.4-ångström resolution
journal, March 2012

  • Scott, M. C.; Chen, Chien-Chun; Mecklenburg, Matthew
  • Nature, Vol. 483, Issue 7390
  • DOI: 10.1038/nature10934

Observing crystal nucleation in four dimensions using atomic electron tomography
journal, June 2019


Advances in 3D focused ion beam tomography
journal, April 2014


Electron channelling contrast imaging of dislocations in a conventional SEM
journal, November 2016


Advances in synchrotron radiation microtomography
journal, July 2006


Electron tomography based on a total variation minimization reconstruction technique
journal, February 2012


EEL spectroscopic tomography: Towards a new dimension in nanomaterials analysis
journal, November 2012


Transmission scanning electron microscopy: Defect observations and image simulations
journal, March 2018


Multiscale 3D characterization with dark-field x-ray microscopy
journal, June 2016

  • Simons, Hugh; Jakobsen, Anders Clemen; Ahl, Sonja Rosenlund
  • MRS Bulletin, Vol. 41, Issue 6
  • DOI: 10.1557/mrs.2016.114

Atomic-scale determination of surface facets in gold nanorods
journal, October 2012

  • Goris, Bart; Bals, Sara; Van den Broek, Wouter
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3462

X-ray absorption in pillar shaped transmission electron microscopy specimens
journal, June 2017


Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminium fabricated by severe plastic deformation
journal, December 2010

  • Miyajima, Yoji; Mitsuhara, Masatoshi; Hata, Satoshi
  • Materials Science and Engineering: A, Vol. 528, Issue 2
  • DOI: 10.1016/j.msea.2010.09.058

Visualization of grain boundary/dislocation interactions using tomographic reconstructions
journal, April 2011


Three-dimensional localization of ultrasmall immuno-gold labels by HAADF-STEM tomography
journal, April 2002


Progress and opportunities in EELS and EDS tomography
journal, September 2017


Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials
journal, April 2017


Three-dimensional analysis of dislocation networks in GaN using weak-beam dark-field electron tomography
journal, October 2006


Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography
journal, March 2009


Fast ‘ Operando ’ electron nanotomography: FAST ‘ OPERANDO ’ ELECTRON NANOTOMOGRAPHY
journal, April 2017

  • Roiban, L.; Li, S.; Aouine, M.
  • Journal of Microscopy, Vol. 269, Issue 2
  • DOI: 10.1111/jmi.12557

Three-dimensional visualization of dislocations in a ferromagnetic material by magnetic-field-free electron tomography
journal, November 2017


Transmission electron microtomography without the “missing wedge” for quantitative structural analysis
journal, January 2007


Surface morphology and dislocation characteristics near the surface of 4H-SiC wafer using multi-directional scanning transmission electron microscopy
journal, August 2017

  • Sato, Takahiro; Orai, Yoshihisa; Suzuki, Yuya
  • Journal of Electron Microscopy, Vol. 66, Issue 5
  • DOI: 10.1093/jmicro/dfx022

The Crystal Structure of Ni 4 Mo
journal, July 1944

  • Harker, David
  • The Journal of Chemical Physics, Vol. 12, Issue 7
  • DOI: 10.1063/1.1723945

Four-Dimensional Spectral Tomography of Carbonaceous Nanocomposites
journal, March 2006

  • Gass, Mhairi H.; Koziol, Krzysztof K. K.; Windle, Alan H.
  • Nano Letters, Vol. 6, Issue 3
  • DOI: 10.1021/nl052120g

Three‐dimensional reconstruction of magnetic vector fields using electron‐holographic interferometry
journal, May 1994

  • Lai, Guanming; Hirayama, Tsukasa; Fukuhara, Akira
  • Journal of Applied Physics, Vol. 75, Issue 9
  • DOI: 10.1063/1.355955

Three-dimensional scanning transmission electron microscopy of dislocation loops in tungsten
journal, October 2018


Probing Crystal Dislocations in a Micrometer-Thick GaN Film by Modern High-Voltage Electron Microscopy
journal, October 2018


Rapid low dose electron tomography using a direct electron detection camera
journal, October 2015

  • Migunov, Vadim; Ryll, Henning; Zhuge, Xiaodong
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14516

3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography
journal, September 2003


Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles
journal, February 2018


Diffraction contrast STEM of dislocations: Imaging and simulations
journal, August 2011


Quantitative electron holographic tomography for the 3D characterisation of semiconductor device structures
journal, October 2008

  • Twitchett-Harrison, Alison C.; Yates, Timothy J. V.; Dunin-Borkowski, Rafal E.
  • Ultramicroscopy, Vol. 108, Issue 11
  • DOI: 10.1016/j.ultramic.2008.05.014

Mapping of individual dislocations with dark-field X-ray microscopy
journal, February 2019

  • Jakobsen, A. C.; Simons, H.; Ludwig, W.
  • Journal of Applied Crystallography, Vol. 52, Issue 1
  • DOI: 10.1107/S1600576718017302

Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography
journal, March 2017


Three-dimensional reconstruction and quantification of dislocation substructures from transmission electron microscopy stereo pairs
journal, December 2018


3D Crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning
journal, July 2006


B11-O-07Electron Tomography Observation of Dislocation Morphology near Surfaces of Mo (001) Thin Foils
journal, November 2015

  • Hata, Satoshi; Shimizu, Makoto; Ikeda, Ken-ichi
  • Microscopy, Vol. 64, Issue suppl 1
  • DOI: 10.1093/jmicro/dfv077

Nanomaterial datasets to advance tomography in scanning transmission electron microscopy
journal, June 2016

  • Levin, Barnaby D. A.; Padgett, Elliot; Chen, Chien-Chun
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.41

Fast electron tomography: Applications to beam sensitive samples and in situ TEM or operando environmental TEM studies
journal, May 2019


3D reconstruction of the spatial distribution of dislocation loops using an automated stereo-imaging approach
journal, December 2018


2pA_SS3-2In-situ straining and electron tomography: towards 3D imaging of dislocation dynamics
journal, October 2018

  • Hata, Satoshi; Saito, Hikaru; Murayama, Mitsuhiro
  • Microscopy, Vol. 67, Issue suppl_2
  • DOI: 10.1093/jmicro/dfy063

Effect of Aging Treatment on Hydrogen Embrittlement of Drawn Pearlitic Steel Wire
journal, January 2016


A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements
journal, October 2011

  • Ordavo, I.; Ihle, S.; Arkadiev, V.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 654, Issue 1
  • DOI: 10.1016/j.nima.2011.05.080

Dislocation tomography made easy: a reconstruction from ADF STEM images obtained using automated image shift correction
journal, August 2008


Crack tip dislocations revealed by electron tomography in silicon single crystal
journal, October 2008


Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis
journal, February 2007

  • Kaneko, Kenji; Inoke, Koji; Freitag, Bert
  • Nano Letters, Vol. 7, Issue 2
  • DOI: 10.1021/nl062677b

Three-Dimensional Orientation Mapping in the Transmission Electron Microscope
journal, May 2011