DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li7La3Zr2O12 for All-Solid-State Lithium Batteries

Abstract

In this work, the impact of liquid electrolyte soaking on the interfacial resistance between the garnet-structured Li7La3Zr2O12 (LLZO) solid electrolyte and metallic lithium has been studied. Lithium carbonate (Li2CO3) formed by inadvertent exposure of LLZO to ambient conditions is generally known to increase interfacial impedance and decrease lithium wettability. Soaking LLZO powders and pellets in the electrolyte containing lithium tetrafluoroborate (LiBF4) shows a significantly reduced interfacial resistance and improved contact between lithium and LLZO. Raman spectroscopy, X-ray diffraction, and soft X-ray absorption spectroscopy reveal how Li2CO3 is continuously removed with increasing soaking time. On-line mass spectrometry and free energy calculations show how LiBF4 reacts with surface carbonate to form carbon dioxide. Using a very simple and scalable process that does not involve heat-treatment and expensive coating techniques, we show that the Li–LLZO interfacial resistance can be reduced by an order of magnitude.

Authors:
 [1];  [2]; ORCiD logo [3];  [3];  [4];  [5]; ORCiD logo [5];  [3]; ORCiD logo [6]; ORCiD logo [3]
  1. Robert Bosch LLC, Sunnyvale, CA (United States); Karlsruhe Inst. of Technology (KIT) (Germany)
  2. Robert Bosch LLC, Sunnyvale, CA (United States); Univ. of Strasbourg (France)
  3. Robert Bosch LLC, Sunnyvale, CA (United States)
  4. Holo, Inc., Oakland, CA (United States)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1638158
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 12; Journal Issue: 18; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; LLZO; all-solid-state battery; lithium-ion battery; garnets; interfacial resistance

Citation Formats

Besli, Münir M., Usubelli, Camille, Metzger, Michael, Pande, Vikram, Harry, Katherine, Nordlund, Dennis, Sainio, Sami, Christensen, Jake, Doeff, Marca M., and Kuppan, Saravanan. Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li7La3Zr2O12 for All-Solid-State Lithium Batteries. United States: N. p., 2020. Web. doi:10.1021/acsami.0c06194.
Besli, Münir M., Usubelli, Camille, Metzger, Michael, Pande, Vikram, Harry, Katherine, Nordlund, Dennis, Sainio, Sami, Christensen, Jake, Doeff, Marca M., & Kuppan, Saravanan. Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li7La3Zr2O12 for All-Solid-State Lithium Batteries. United States. https://doi.org/10.1021/acsami.0c06194
Besli, Münir M., Usubelli, Camille, Metzger, Michael, Pande, Vikram, Harry, Katherine, Nordlund, Dennis, Sainio, Sami, Christensen, Jake, Doeff, Marca M., and Kuppan, Saravanan. Tue . "Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li7La3Zr2O12 for All-Solid-State Lithium Batteries". United States. https://doi.org/10.1021/acsami.0c06194. https://www.osti.gov/servlets/purl/1638158.
@article{osti_1638158,
title = {Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li7La3Zr2O12 for All-Solid-State Lithium Batteries},
author = {Besli, Münir M. and Usubelli, Camille and Metzger, Michael and Pande, Vikram and Harry, Katherine and Nordlund, Dennis and Sainio, Sami and Christensen, Jake and Doeff, Marca M. and Kuppan, Saravanan},
abstractNote = {In this work, the impact of liquid electrolyte soaking on the interfacial resistance between the garnet-structured Li7La3Zr2O12 (LLZO) solid electrolyte and metallic lithium has been studied. Lithium carbonate (Li2CO3) formed by inadvertent exposure of LLZO to ambient conditions is generally known to increase interfacial impedance and decrease lithium wettability. Soaking LLZO powders and pellets in the electrolyte containing lithium tetrafluoroborate (LiBF4) shows a significantly reduced interfacial resistance and improved contact between lithium and LLZO. Raman spectroscopy, X-ray diffraction, and soft X-ray absorption spectroscopy reveal how Li2CO3 is continuously removed with increasing soaking time. On-line mass spectrometry and free energy calculations show how LiBF4 reacts with surface carbonate to form carbon dioxide. Using a very simple and scalable process that does not involve heat-treatment and expensive coating techniques, we show that the Li–LLZO interfacial resistance can be reduced by an order of magnitude.},
doi = {10.1021/acsami.0c06194},
journal = {ACS Applied Materials and Interfaces},
number = 18,
volume = 12,
place = {United States},
year = {Tue Apr 14 00:00:00 EDT 2020},
month = {Tue Apr 14 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Synthesis, Crystal Structure, and Stability of Cubic Li 7– x La 3 Zr 2– x Bi x O 12
journal, November 2016


Impact of air exposure and surface chemistry on Li–Li 7 La 3 Zr 2 O 12 interfacial resistance
journal, January 2017

  • Sharafi, Asma; Yu, Seungho; Naguib, Michael
  • Journal of Materials Chemistry A, Vol. 5, Issue 26
  • DOI: 10.1039/c7ta03162a

Ambient Storage Derived Surface Contamination of NCM811 and NCM111: Performance Implications and Mitigation Strategies
journal, January 2019

  • Sicklinger, Johannes; Metzger, Michael; Beyer, Hans
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0011912jes

Lithium garnets: Synthesis, structure, Li + conductivity, Li + dynamics and applications
journal, July 2017


The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes
journal, January 2015

  • Cheng, Lei; Chen, Wei; Kunz, Martin
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am508111r

Garnet Electrolyte Surface Degradation and Recovery
journal, October 2018

  • Cheng, Lei; Liu, Miao; Mehta, Apurva
  • ACS Applied Energy Materials, Vol. 1, Issue 12
  • DOI: 10.1021/acsaem.8b01723

Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries
journal, June 2014


Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration
journal, January 2013

  • Larraz, G.; Orera, A.; Sanjuán, M. L.
  • Journal of Materials Chemistry A, Vol. 1, Issue 37
  • DOI: 10.1039/c3ta11996c

Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li 7 La 3 Zr 2 O 12 Electrolyte and LiCoO 2 Cathode
journal, July 2018


Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, August 2015

  • Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 32
  • DOI: 10.1021/acsami.5b02528

Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density
journal, January 2016


XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF[sub 4]
journal, January 1995

  • Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 142, Issue 2
  • DOI: 10.1149/1.2044000

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Rechargeable Li//Br battery: a promising platform for post lithium ion batteries
journal, January 2014

  • Chang, Zheng; Wang, Xujiong; Yang, Yaqiong
  • J. Mater. Chem. A, Vol. 2, Issue 45
  • DOI: 10.1039/C4TA04419C

The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions
journal, January 1994

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054718

Recent developments in garnet based solid state electrolytes for thin film batteries
journal, February 2014

  • Teng, Shiang; Tan, Jiajia; Tiwari, Ashutosh
  • Current Opinion in Solid State and Materials Science, Vol. 18, Issue 1
  • DOI: 10.1016/j.cossms.2013.10.002

Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C 1 − C 10
journal, September 2016

  • Acree, William; Chickos, James S.
  • Journal of Physical and Chemical Reference Data, Vol. 45, Issue 3
  • DOI: 10.1063/1.4948363

Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries
journal, April 2018

  • Li, Yutao; Chen, Xi; Dolocan, Andrei
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.8b03106

Interphase Engineering Enabled All-Ceramic Lithium Battery
journal, March 2018


Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12
journal, January 2013


Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li 7 La 3 Zr 2 O 12
journal, September 2017


A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra
journal, January 2007

  • Solé, V. A.; Papillon, E.; Cotte, M.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 62, Issue 1
  • DOI: 10.1016/j.sab.2006.12.002

The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes
journal, May 2002


Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte
journal, January 2015

  • Zu, Chenxi; Azimi, Nasim; Zhang, Zhengcheng
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA03195H

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Hydrolysis of Ethylene Carbonate with Water and Hydroxide under Battery Operating Conditions
journal, January 2016

  • Metzger, Michael; Strehle, Benjamin; Solchenbach, Sophie
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0411607jes