skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales

Abstract

Collective processes in plasmas often induce microinstabilities that play an important role in many space or laboratory plasma environments. Particularly of note is the Weibel-type current filamentation instability, which is believed to drive the creation of collisionless shocks in weakly magnetized astrophysical plasmas. In this paper, this instability class is studied through interactions of ultraintense and short laser pulses with solid foils, leading to localized generation of megaelectronvolt electrons. Proton radiographic measurements of both low- and high-resistivity targets show two distinct, superimposed electromagnetic field patterns arising from the interpenetration of the megaelectronvolt electrons and the background plasma. Particle-in-cell simulations and theoretical estimates suggest that the collisionless Weibel instability building up in the dilute expanding plasmas formed at the target surfaces causes the observed azimuthally symmetric electromagnetic filaments. For a sufficiently high resistivity of the target foil, an additional resistive instability is triggered in the bulk target, giving rise to radially elongated filaments. The data reveal the growth of both filamentation instabilities over large temporal (tens of picoseconds) and spatial (hundreds of micrometres) scales.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4];  [5];  [6];  [7];  [8]; ORCiD logo [9];  [2];  [10];  [11];  [12];  [11];  [5];  [13]; ORCiD logo [2];  [2]; ORCiD logo [14]; ORCiD logo [15]
  1. Sorbonne Univ., Ecole Polytechnique, Palaiseau (France). LULI-CNRS, CEA, UPMC; SLAC National Accelerator Lab., Menlo Park, CA (United States); CEA, DAM, DIF, Arpajon (France)
  2. Sorbonne Univ., Ecole Polytechnique, Palaiseau (France). LULI-CNRS, CEA, UPMC
  3. Sorbonne Univ., Ecole Polytechnique, Palaiseau (France). LULI-CNRS, CEA, UPMC; INRS-EMT, Varennes, QC (Canada)
  4. ELI-NP, Horia Hulubei National Inst. of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)
  5. INRS-EMT, Varennes, QC (Canada)
  6. Heinrich-Heine Univ., Dusseldorf (Germany). Inst. fur Laser-und Plasmaphysik
  7. Sorbonne Univ., Ecole Polytechnique, Palaiseau (France). LULI-CNRS, CEA, UPMC; CEA, DAM, DIF, Arpajon (France)
  8. Sorbonne Univ., Ecole Polytechnique, Palaiseau (France). LULI-CNRS, CEA, UPMC; Univ. di Roma La Sapienza, Rome (Italy)
  9. Sorbonne Univ., Ecole Polytechnique, Palaiseau (France). LULI-CNRS, CEA, UPMC; European XFEL, Schenefeld (Germany)
  10. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  11. Heinrich Heine Univ., Dusseldorf (Germany). Inst. fur Laser- und Plasmaphysik
  12. Queen's Univ., Belfast, Northern Ireland (United Kingdom)
  13. Inst. of Applied Physics, Nizhny Novgorod (Russia)
  14. CEA, DAM, DIC, Arpajon (France)
  15. Sorbonne Univ., Ecole Polytechnique, Palaiseau (France). LULI-CNRS, CEA, UPMC; Inst. of Applied Physics, Nizhny Novgorod (Russia)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE; PRACE; European Research Council (ERC); Agence Nationale de la Recherche; Engineering and Physical Sciences Research Council (EPSRC); Ministry of Education and Science of the Russian Federation
OSTI Identifier:
1638046
Grant/Contract Number:  
AC02-76SF00515; 2014112576; 654148; 787539; 11-IDEX-0004-02; ANR-17-CE30-0026-Pinnacle; EP/K022415/1; EP/J002550/1; 14.Z50.31.0007
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 16; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Astrophysical plasmas; laser-produced plasmas

Citation Formats

Ruyer, C., Bolaños, S., Albertazzi, B., Chen, S. N., Antici, P., Böker, J., Dervieux, V., Lancia, L., Nakatsutsumi, M., Romagnani, L., Shepherd, R., Swantusch, M., Borghesi, M., Willi, O., Pépin, H., Starodubtsev, M., Grech, M., Riconda, C., Gremillet, L., and Fuchs, J. Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales. United States: N. p., 2020. Web. https://doi.org/10.1038/s41567-020-0913-x.
Ruyer, C., Bolaños, S., Albertazzi, B., Chen, S. N., Antici, P., Böker, J., Dervieux, V., Lancia, L., Nakatsutsumi, M., Romagnani, L., Shepherd, R., Swantusch, M., Borghesi, M., Willi, O., Pépin, H., Starodubtsev, M., Grech, M., Riconda, C., Gremillet, L., & Fuchs, J. Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales. United States. https://doi.org/10.1038/s41567-020-0913-x
Ruyer, C., Bolaños, S., Albertazzi, B., Chen, S. N., Antici, P., Böker, J., Dervieux, V., Lancia, L., Nakatsutsumi, M., Romagnani, L., Shepherd, R., Swantusch, M., Borghesi, M., Willi, O., Pépin, H., Starodubtsev, M., Grech, M., Riconda, C., Gremillet, L., and Fuchs, J. Mon . "Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales". United States. https://doi.org/10.1038/s41567-020-0913-x. https://www.osti.gov/servlets/purl/1638046.
@article{osti_1638046,
title = {Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales},
author = {Ruyer, C. and Bolaños, S. and Albertazzi, B. and Chen, S. N. and Antici, P. and Böker, J. and Dervieux, V. and Lancia, L. and Nakatsutsumi, M. and Romagnani, L. and Shepherd, R. and Swantusch, M. and Borghesi, M. and Willi, O. and Pépin, H. and Starodubtsev, M. and Grech, M. and Riconda, C. and Gremillet, L. and Fuchs, J.},
abstractNote = {Collective processes in plasmas often induce microinstabilities that play an important role in many space or laboratory plasma environments. Particularly of note is the Weibel-type current filamentation instability, which is believed to drive the creation of collisionless shocks in weakly magnetized astrophysical plasmas. In this paper, this instability class is studied through interactions of ultraintense and short laser pulses with solid foils, leading to localized generation of megaelectronvolt electrons. Proton radiographic measurements of both low- and high-resistivity targets show two distinct, superimposed electromagnetic field patterns arising from the interpenetration of the megaelectronvolt electrons and the background plasma. Particle-in-cell simulations and theoretical estimates suggest that the collisionless Weibel instability building up in the dilute expanding plasmas formed at the target surfaces causes the observed azimuthally symmetric electromagnetic filaments. For a sufficiently high resistivity of the target foil, an additional resistive instability is triggered in the bulk target, giving rise to radially elongated filaments. The data reveal the growth of both filamentation instabilities over large temporal (tens of picoseconds) and spatial (hundreds of micrometres) scales.},
doi = {10.1038/s41567-020-0913-x},
journal = {Nature Physics},
number = ,
volume = 16,
place = {United States},
year = {2020},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields
journal, April 2015

  • Albertazzi, B.; d’Humières, E.; Lancia, L.
  • Review of Scientific Instruments, Vol. 86, Issue 4
  • DOI: 10.1063/1.4917273

Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas
journal, May 2012

  • Mondal, S.; Narayanan, V.; Ding, W. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 21
  • DOI: 10.1073/pnas.1200753109

Some practical remarks on multiple scattering
journal, November 1975


An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

Magnetic-Field Generation and Amplification in an Expanding Plasma
journal, April 2014


A global simulation for laser-driven MeV electrons in 50-μm-diameter fast ignition targets
journal, May 2006

  • Ren, C.; Tzoufras, M.; Tonge, J.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2173617

Dynamics of Self-Generated, Large Amplitude Magnetic Fields Following High-Intensity Laser Matter Interaction
journal, November 2012


Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution
journal, February 1959


Mechanism for Instability of Transverse Plasma Waves
journal, January 1959


Relativistic effects on the collisionless–collisional transition of the filamentation instability in fast ignition
journal, August 2010


Annular Fast Electron Transport in Silicon Arising from Low-Temperature Resistivity
journal, August 2013


Diagnosis of Weibel instability evolution in the rear surface density scale lengths of laser solid interactions via proton acceleration
journal, April 2017


Relativistic Electron Streaming Instabilities Modulate Proton Beams Accelerated in Laser-Plasma Interactions
journal, May 2017


Passage of particles through matter
journal, March 2000

  • Groom, D. E.; Klein, S. R.
  • The European Physical Journal C, Vol. 15, Issue 1-4
  • DOI: 10.1007/BF02683419

The microphysics of collisionless shock waves
journal, March 2016


Filamented transport of laser-generated relativistic electrons penetrating a solid target
journal, March 2002

  • Gremillet, Laurent; Bonnaud, Guy; Amiranoff, François
  • Physics of Plasmas, Vol. 9, Issue 3
  • DOI: 10.1063/1.1432994

A second-order implicit particle mover with adjustable damping
journal, October 1990


Weibel-Induced Filamentation during an Ultrafast Laser-Driven Plasma Expansion
journal, March 2012


Dispersion and Transport of Energetic Particles due to the Interaction of Intense Laser Pulses with Overdense Plasmas
journal, November 2006


Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
journal, January 2015

  • Huntington, C. M.; Fiuza, F.; Ross, J. S.
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3178

Numerical growth of emittance in simulations of laser-wakefield acceleration
journal, February 2013

  • Lehe, R.; Lifschitz, A.; Thaury, C.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 16, Issue 2
  • DOI: 10.1103/PhysRevSTAB.16.021301

K α fluorescence measurement of relativistic electron transport in the context of fast ignition
journal, June 2004


Spatial Uniformity of Laser-Accelerated Ultrahigh-Current MeV Electron Propagation in Metals and Insulators
journal, December 2003


Absorption of Short Laser Pulses on Solid Targets in the Ultrarelativistic Regime
journal, February 2008


High-Current, Relativistic Electron-Beam Transport in Metals and the Role of Magnetic Collimation
journal, June 2009


Electron and photon production from relativistic laser–plasma interactions
journal, July 2003


Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame
journal, July 2011

  • Vay, J. -L.; Geddes, C. G. R.; Cormier-Michel, E.
  • Journal of Computational Physics, Vol. 230, Issue 15
  • DOI: 10.1016/j.jcp.2011.04.003

Filamentation Instability of Counterstreaming Laser-Driven Plasmas
journal, November 2013


Thin-foil expansion into a vacuum
journal, November 2005


Experimental observation of transverse modulations in laser-driven proton beams
journal, February 2014


Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability
journal, July 2016

  • Chen, S. N.; Gauthier, M.; Bazalova-Carter, M.
  • Review of Scientific Instruments, Vol. 87, Issue 7
  • DOI: 10.1063/1.4954921

Alternating-order interpolation in a charge-conserving scheme for particle-in-cell simulations
journal, February 2013


Observations of the filamentation of high-intensity laser-produced electron beams
journal, November 2004


Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes
journal, August 2012

  • Pérez, F.; Gremillet, L.; Decoster, A.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4742167

Dynamics of the Electromagnetic Fields Induced by Fast Electron Propagation in Near-Solid-Density Media
journal, January 2019


Effect of Lattice Structure on Energetic Electron Transport in Solids Irradiated by Ultraintense Laser Pulses
journal, May 2011


Simulation of laser–plasma interactions and fast-electron transport in inhomogeneous plasma
journal, June 2010


Electromagnetic Instabilities, Filamentation, and Focusing of Relativistic Electron Beams
journal, December 1973


Experimental Study of Current Filamentation Instability
journal, November 2012


Cosmological Magnetic Field Generation by the Weibel Instability
journal, December 2003

  • Schlickeiser, R.; Shukla, P. K.
  • The Astrophysical Journal, Vol. 599, Issue 2
  • DOI: 10.1086/381246

Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses
journal, February 2004


Nonlinear Development of Electromagnetic Instabilities in Anisotropic Plasmas
journal, January 1972


Multidimensional electron beam-plasma instabilities in the relativistic regime
journal, December 2010

  • Bret, A.; Gremillet, L.; Dieckmann, M. E.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3514586

One-dimensional particle simulation of the filamentation instability: Electrostatic field driven by the magnetic pressure gradient force
journal, July 2009

  • Dieckmann, M. E.; Kourakis, I.; Borghesi, M.
  • Physics of Plasmas, Vol. 16, Issue 7
  • DOI: 10.1063/1.3160629

Effects of filamentation instability on the divergence of relativistic electrons driven by ultraintense laser pulses
journal, October 2016

  • Yang, X. H.; Zhuo, H. B.; Xu, H.
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4966205