skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PPINN: Parareal physics-informed neural network for time-dependent PDEs

Authors:
; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1637715
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Additional Journal Information:
Journal Name: Computer Methods in Applied Mechanics and Engineering Journal Volume: 370 Journal Issue: C; Journal ID: ISSN 0045-7825
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Meng, Xuhui, Li, Zhen, Zhang, Dongkun, and Karniadakis, George Em. PPINN: Parareal physics-informed neural network for time-dependent PDEs. Netherlands: N. p., 2020. Web. https://doi.org/10.1016/j.cma.2020.113250.
Meng, Xuhui, Li, Zhen, Zhang, Dongkun, & Karniadakis, George Em. PPINN: Parareal physics-informed neural network for time-dependent PDEs. Netherlands. https://doi.org/10.1016/j.cma.2020.113250
Meng, Xuhui, Li, Zhen, Zhang, Dongkun, and Karniadakis, George Em. Thu . "PPINN: Parareal physics-informed neural network for time-dependent PDEs". Netherlands. https://doi.org/10.1016/j.cma.2020.113250.
@article{osti_1637715,
title = {PPINN: Parareal physics-informed neural network for time-dependent PDEs},
author = {Meng, Xuhui and Li, Zhen and Zhang, Dongkun and Karniadakis, George Em},
abstractNote = {},
doi = {10.1016/j.cma.2020.113250},
journal = {Computer Methods in Applied Mechanics and Engineering},
number = C,
volume = 370,
place = {Netherlands},
year = {2020},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.cma.2020.113250

Save / Share:

Works referenced in this record:

A Multiresolution Strategy for Reduction of Elliptic PDEs and Eigenvalue Problems
journal, April 1998

  • Beylkin, Gregory; Coult, Nicholas
  • Applied and Computational Harmonic Analysis, Vol. 5, Issue 2
  • DOI: 10.1006/acha.1997.0226

Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
journal, December 2018


ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains
journal, October 2019


Finite difference methods for two-dimensional fractional dispersion equation
journal, January 2006

  • Meerschaert, Mark M.; Scheffler, Hans-Peter; Tadjeran, Charles
  • Journal of Computational Physics, Vol. 211, Issue 1
  • DOI: 10.1016/j.jcp.2005.05.017

Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media
journal, September 2016


Optimization Methods for Large-Scale Machine Learning
journal, January 2018

  • Bottou, Léon; Curtis, Frank E.; Nocedal, Jorge
  • SIAM Review, Vol. 60, Issue 2
  • DOI: 10.1137/16M1080173

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
journal, February 2019


Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications
journal, January 2003

  • Farhat, Charbel; Chandesris, Marion
  • International Journal for Numerical Methods in Engineering, Vol. 58, Issue 9
  • DOI: 10.1002/nme.860

Implicit Parallel Time Integrators
journal, December 2010


A Parallel Space-Time Algorithm
journal, January 2012

  • Christlieb, Andrew J.; Haynes, Ronald D.; Ong, Benjamin W.
  • SIAM Journal on Scientific Computing, Vol. 34, Issue 5
  • DOI: 10.1137/110843484

Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
journal, November 2019


Adversarial uncertainty quantification in physics-informed neural networks
journal, October 2019


Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics
journal, September 2019

  • Blumers, Ansel L.; Li, Zhen; Karniadakis, George Em
  • Journal of Computational Physics, Vol. 393
  • DOI: 10.1016/j.jcp.2019.05.016

Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
journal, December 2014

  • Baudron, Anne-Marie; Lautard, Jean-Jacques; Maday, Yvon
  • Journal of Computational Physics, Vol. 279
  • DOI: 10.1016/j.jcp.2014.08.037

A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations
journal, January 2013

  • Legoll, Frédéric; Lelièvre, Tony; Samaey, Giovanni
  • SIAM Journal on Scientific Computing, Vol. 35, Issue 4
  • DOI: 10.1137/120872681

Neural-network-based approximations for solving partial differential equations
journal, March 1994

  • Dissanayake, M. W. M. G.; Phan-Thien, N.
  • Communications in Numerical Methods in Engineering, Vol. 10, Issue 3
  • DOI: 10.1002/cnm.1640100303

An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs
journal, January 2014

  • Haut, Terry; Wingate, Beth
  • SIAM Journal on Scientific Computing, Vol. 36, Issue 2
  • DOI: 10.1137/130914577