skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Artificial Double-Helix for Geometrical Control of Magnetic Chirality

Abstract

Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5];  [5];  [6]; ORCiD logo [7]; ORCiD logo [6];  [5];  [8]; ORCiD logo [9]
  1. Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom, Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
  2. SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, U.K., Departamento de Física, Universidad de Oviedo, 33007 Oviedo, Spain, CINN (CSIC-Universidad de Oviedo), 33940 El Entrego, Spain
  3. Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
  4. Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
  5. ALBA Synchrotron, 08290 Cerdanyola del Vallès, Spain
  6. Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain, Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Departamento de Física de la Materia Condensada, 50009 Zaragoza, Spain
  7. SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, U.K.
  8. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States, Physics Department, University of California Santa Cruz, Santa Cruz, California 95064, United States
  9. Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom, SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, U.K.
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Engineering and Physical Sciences Research Council (EPSRC); European Research Council (ERC); Spanish Ministry of Science
OSTI Identifier:
1637712
Alternate Identifier(s):
OSTI ID: 1756346
Grant/Contract Number:  
AC02-05CH11231; EP/ M008517/1; EP/M024423/1; H2020-MSCA-IF-2016-74695; MAT2017-82970-C2-1-R; MAT2017-82970-C2-2-R; MAT2018-102627-T; BES-2015-072950
Resource Type:
Published Article
Journal Name:
ACS Nano
Additional Journal Information:
Journal Name: ACS Nano Journal Volume: 14 Journal Issue: 7; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 3D; nanoprinting; nanomagnetic; chirality; topological; double-helix; X-ray

Citation Formats

Sanz-Hernández, Dédalo, Hierro-Rodriguez, Aurelio, Donnelly, Claire, Pablo-Navarro, Javier, Sorrentino, Andrea, Pereiro, Eva, Magén, César, McVitie, Stephen, de Teresa, José María, Ferrer, Salvador, Fischer, Peter, and Fernández-Pacheco, Amalio. Artificial Double-Helix for Geometrical Control of Magnetic Chirality. United States: N. p., 2020. Web. https://doi.org/10.1021/acsnano.0c00720.
Sanz-Hernández, Dédalo, Hierro-Rodriguez, Aurelio, Donnelly, Claire, Pablo-Navarro, Javier, Sorrentino, Andrea, Pereiro, Eva, Magén, César, McVitie, Stephen, de Teresa, José María, Ferrer, Salvador, Fischer, Peter, & Fernández-Pacheco, Amalio. Artificial Double-Helix for Geometrical Control of Magnetic Chirality. United States. https://doi.org/10.1021/acsnano.0c00720
Sanz-Hernández, Dédalo, Hierro-Rodriguez, Aurelio, Donnelly, Claire, Pablo-Navarro, Javier, Sorrentino, Andrea, Pereiro, Eva, Magén, César, McVitie, Stephen, de Teresa, José María, Ferrer, Salvador, Fischer, Peter, and Fernández-Pacheco, Amalio. Tue . "Artificial Double-Helix for Geometrical Control of Magnetic Chirality". United States. https://doi.org/10.1021/acsnano.0c00720.
@article{osti_1637712,
title = {Artificial Double-Helix for Geometrical Control of Magnetic Chirality},
author = {Sanz-Hernández, Dédalo and Hierro-Rodriguez, Aurelio and Donnelly, Claire and Pablo-Navarro, Javier and Sorrentino, Andrea and Pereiro, Eva and Magén, César and McVitie, Stephen and de Teresa, José María and Ferrer, Salvador and Fischer, Peter and Fernández-Pacheco, Amalio},
abstractNote = {Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.},
doi = {10.1021/acsnano.0c00720},
journal = {ACS Nano},
number = 7,
volume = 14,
place = {United States},
year = {2020},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsnano.0c00720

Save / Share:

Works referenced in this record:

Adaptively time stepping the stochastic Landau-Lifshitz-Gilbert equation at nonzero temperature: Implementation and validation in MuMax 3
journal, December 2017

  • Leliaert, J.; Mulkers, J.; De Clercq, J.
  • AIP Advances, Vol. 7, Issue 12
  • DOI: 10.1063/1.5003957

A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics
journal, January 1958


Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies
journal, July 2015

  • Streubel, Robert; Kronast, Florian; Fischer, Peter
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8612

Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
journal, January 2016

  • Moreau-Luchaire, C.; Moutafis, C.; Reyren, N.
  • Nature Nanotechnology, Vol. 11, Issue 5
  • DOI: 10.1038/nnano.2015.313

Skyrmions on the track
journal, March 2013

  • Fert, Albert; Cros, Vincent; Sampaio, João
  • Nature Nanotechnology, Vol. 8, Issue 3
  • DOI: 10.1038/nnano.2013.29

Concept of artificial magnetoelectric materials via geometrically controlling curvilinear helimagnets
journal, June 2019

  • Volkov, O. M.; Rößler, U. K.; Fassbender, J.
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 34
  • DOI: 10.1088/1361-6463/ab2368

The design and verification of MuMax3
journal, October 2014

  • Vansteenkiste, Arne; Leliaert, Jonathan; Dvornik, Mykola
  • AIP Advances, Vol. 4, Issue 10
  • DOI: 10.1063/1.4899186

Skyrmion Lattice in a Chiral Magnet
journal, February 2009


Experimental observation of chiral magnetic bobbers in B20-type FeGe
journal, April 2018

  • Zheng, Fengshan; Rybakov, Filipp N.; Borisov, Aleksandr B.
  • Nature Nanotechnology, Vol. 13, Issue 6
  • DOI: 10.1038/s41565-018-0093-3

Magnetism in curved geometries
journal, August 2016


Visualization of the Magnetic Structure of Sculpted Three-Dimensional Cobalt Nanospirals
journal, January 2014

  • Phatak, Charudatta; Liu, Yuzi; Gulsoy, Emine Begum
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404071u

Three-Dimensional Observation of Magnetic Vortex Cores in Stacked Ferromagnetic Discs
journal, January 2015

  • Tanigaki, Toshiaki; Takahashi, Yoshio; Shimakura, Tomokazu
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504473a

Chiral selection on inorganic crystalline surfaces
journal, June 2003

  • Hazen, Robert M.; Sholl, David S.
  • Nature Materials, Vol. 2, Issue 6
  • DOI: 10.1038/nmat879

Experimental Observation of Exchange-Driven Chiral Effects in Curvilinear Magnetism
journal, August 2019


Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes
journal, January 2009


Imaging of magnetic domains by transmission x-ray microscopy
journal, March 1998


High-Performance Ultrathin Active Chiral Metamaterials
journal, April 2018


The Nose as a Stereochemist. Enantiomers and Odor
journal, September 2006


Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
journal, February 2016

  • Woo, Seonghoon; Litzius, Kai; Krüger, Benjamin
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4593

Three-dimensional magnetization structures revealed with X-ray vector nanotomography
journal, July 2017

  • Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio
  • Nature, Vol. 547, Issue 7663
  • DOI: 10.1038/nature23006

Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets
journal, June 2019

  • Fernández-Pacheco, Amalio; Vedmedenko, Elena; Ummelen, Fanny
  • Nature Materials, Vol. 18, Issue 7
  • DOI: 10.1038/s41563-019-0386-4

Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet
journal, August 2019


Fiji: an open-source platform for biological-image analysis
journal, June 2012

  • Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2019

Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
journal, December 2016

  • Litzius, Kai; Lemesh, Ivan; Krüger, Benjamin
  • Nature Physics, Vol. 13, Issue 2
  • DOI: 10.1038/nphys4000

Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy
journal, September 2015

  • Blanco-Roldán, C.; Quirós, C.; Sorrentino, A.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9196

Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport
journal, January 2012


Magnetic antiskyrmions above room temperature in tetragonal Heusler materials
journal, August 2017

  • Nayak, Ajaya K.; Kumar, Vivek; Ma, Tianping
  • Nature, Vol. 548, Issue 7669
  • DOI: 10.1038/nature23466

Tendril Perversion in Intrinsically Curved Rods
journal, July 2002


Binding a hopfion in a chiral magnet nanodisk
journal, November 2018


Topological domain walls in helimagnets
journal, March 2018


Tuning shape, composition and magnetization of 3D cobalt nanowires grown by focused electron beam induced deposition (FEBID)
journal, April 2017

  • Pablo-Navarro, Javier; Sanz-Hernández, Dédalo; Magén, César
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 18
  • DOI: 10.1088/1361-6463/aa63b4

Layer-by-Layer Growth of Complex-Shaped Three-Dimensional Nanostructures with Focused Electron Beams
journal, December 2019


Topological Hall Effect in the A Phase of MnSi
journal, May 2009


Gold Helix Photonic Metamaterial as Broadband Circular Polarizer
journal, August 2009


Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets
journal, April 2019


Curvature-Induced Magnetochirality
journal, September 2013


Anisotropic Superexchange Interaction and Weak Ferromagnetism
journal, October 1960


Hopfions in chiral magnets
journal, August 2018


MISTRAL: a transmission soft X-ray microscopy beamline for cryo nano-tomography of biological samples and magnetic domains imaging
journal, June 2015

  • Sorrentino, Andrea; Nicolás, Josep; Valcárcel, Ricardo
  • Journal of Synchrotron Radiation, Vol. 22, Issue 4
  • DOI: 10.1107/S1600577515008632

Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets
journal, September 2019


Three-dimensional nanomagnetism
journal, June 2017

  • Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15756

Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)
journal, May 2016


NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Memory on the racetrack
journal, March 2015


Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition
journal, October 2009


Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality
journal, January 2018