Zero-bias conductance peak in Dirac semimetal-superconductor devices
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Univ. of British Columbia, Vancouver, BC (Canada)
- Univ. of Texas at Dallas, TX (United States)
- Univ. of California, Santa Barbara, CA (United States). Microsoft Quantum, Microsoft Station Q
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Majorana zero modes (MZMs), fundamental building blocks for realizing topological quantum computers, can appear at the interface between a superconductor and a topological material. One of the experimental signatures that has been widely pursued to confirm the existence of MZMs is the observation of a large, quantized zero-bias conductance peak (ZBCP) in the differential conductance measurements. In this Letter, we report observation of such a large ZBCP in junction structures of normal metal (titanium/gold Ti/Au)—Dirac semimetal (cadmium-arsenide Cd3As2)—conventional superconductor (aluminum Al), with a value close to four times that of the normal state conductance. Our detailed analyses suggest that this large ZBCP is most likely not caused by MZMs. We attribute the ZBCP, instead, to the existence of a supercurrent between two far-separated superconducting Al electrodes, which shows up as a zero-bias peak because of the circuitry and thermal fluctuations of the supercurrent phase, a mechanism conceived by Ivanchenko and Zil'berman more than 50 years ago [Ivanchenko and Zil’berman, JETP 28, 1272 (1969)]. Our results thus call for extreme caution when assigning the origin of a large ZBCP to MZMs in a multiterminal semiconductor or topological insulator/semimetal setup. We thus provide criteria for identifying when the ZBCP is definitely not caused by an MZM. Furthermore, we present several remarkable experimental results of a supercurrent effect occurring over unusually long distances and clean perfect Andreev reflection features.
- Research Organization:
- Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF); ARO
- Grant/Contract Number:
- AC04-94AL85000; NA0003525; W911NF-18-1-0416; DMR-1921581
- OSTI ID:
- 1635577
- Alternate ID(s):
- OSTI ID: 1644080
- Report Number(s):
- SAND-2020-7280J; 687406; TRN: US2202002
- Journal Information:
- Physical Review Research, Vol. 2, Issue 3; ISSN 2643-1564
- Publisher:
- American Physical Society (APS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Topological supercurrents interaction and fluctuations in the multiterminal Josephson effect
Evidence for a new excitation at the interface between a high- superconductor and a topological insulator