skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron acceleration in laboratory-produced turbulent collisionless shocks

Abstract

Astrophysical collisionless shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic plasma flows with the interstellar medium, supernova remnant shocks are observed to amplify magnetic fields1 and accelerate electrons and protons to highly relativistic speeds2,3,4. In the well-established model of diffusive shock acceleration5, relativistic particles are accelerated by repeated shock crossings. However, this requires a separate mechanism that pre-accelerates particles to enable shock crossing. This is known as the ‘injection problem’, which is particularly relevant for electrons, and remains one of the most important puzzles in shock acceleration6. In most astrophysical shocks, the details of the shock structure cannot be directly resolved, making it challenging to identify the injection mechanism. Here we report results from laser-driven plasma flow experiments, and related simulations, that probe the formation of turbulent collisionless shocks in conditions relevant to young supernova remnants. We show that electrons can be effectively accelerated in a first-order Fermi process by small-scale turbulence produced within the shock transition to relativistic non-thermal energies, helping overcome the injection problem. Our observations provide new insight into electron injection at shocks and open the way for controlled laboratory studies of the physics underlying cosmic accelerators.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [3]; ORCiD logo [2];  [2];  [4]; ORCiD logo [5];  [6];  [1];  [7];  [8];  [2];  [2];  [2];  [4];  [9];  [10];  [2];  [2]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Alberta, Edmonton, AB (Canada)
  5. Univ. of Michigan, Ann Arbor, MI (United States)
  6. Friedrich-Alexander-Univ. Erlangen-Nuremberg (Germany)
  7. Oxford Univ. (United Kingdom)
  8. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  9. Osaka Univ. (Japan)
  10. Princeton Univ., NJ (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Princeton Univ., NJ (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE Laboratory Directed Research and Development (LDRD) Program; Engineering and Physical Sciences Research Council (EPSRC); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1635109
Alternate Identifier(s):
OSTI ID: 1635110; OSTI ID: 1658455; OSTI ID: 1729741
Report Number(s):
LLNL-JRNL-811841
Journal ID: ISSN 1745-2473
Grant/Contract Number:  
AC02-76SF00515; NA0002725; AC52-07NA27344; 15-ERD-065; EP/M022331/1; EP/N014472/1
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 16; Journal Issue: 9; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; high-energy-density plasmas; astrophysical plasmas; collisionless shocks; particle acceleration; High-energy-density plasmas, astrophysical plasmas, collisionless shocks, particle acceleration; 79 ASTRONOMY AND ASTROPHYSICS; Physics - Plasma physics

Citation Formats

Fiuza, F., Swadling, G. F., Grassi, A., Rinderknecht, H. G., Higginson, D. P., Ryutov, D. D., Bruulsema, C., Drake, R. P., Funk, S., Glenzer, S., Gregori, G., Li, C. K., Pollock, B. B., Remington, B. A., Ross, J. S., Rozmus, W., Sakawa, Y., Spitkovsky, A., Wilks, S., and Park, H.-S. Electron acceleration in laboratory-produced turbulent collisionless shocks. United States: N. p., 2020. Web. https://doi.org/10.1038/s41567-020-0919-4.
Fiuza, F., Swadling, G. F., Grassi, A., Rinderknecht, H. G., Higginson, D. P., Ryutov, D. D., Bruulsema, C., Drake, R. P., Funk, S., Glenzer, S., Gregori, G., Li, C. K., Pollock, B. B., Remington, B. A., Ross, J. S., Rozmus, W., Sakawa, Y., Spitkovsky, A., Wilks, S., & Park, H.-S. Electron acceleration in laboratory-produced turbulent collisionless shocks. United States. https://doi.org/10.1038/s41567-020-0919-4
Fiuza, F., Swadling, G. F., Grassi, A., Rinderknecht, H. G., Higginson, D. P., Ryutov, D. D., Bruulsema, C., Drake, R. P., Funk, S., Glenzer, S., Gregori, G., Li, C. K., Pollock, B. B., Remington, B. A., Ross, J. S., Rozmus, W., Sakawa, Y., Spitkovsky, A., Wilks, S., and Park, H.-S. Mon . "Electron acceleration in laboratory-produced turbulent collisionless shocks". United States. https://doi.org/10.1038/s41567-020-0919-4. https://www.osti.gov/servlets/purl/1635109.
@article{osti_1635109,
title = {Electron acceleration in laboratory-produced turbulent collisionless shocks},
author = {Fiuza, F. and Swadling, G. F. and Grassi, A. and Rinderknecht, H. G. and Higginson, D. P. and Ryutov, D. D. and Bruulsema, C. and Drake, R. P. and Funk, S. and Glenzer, S. and Gregori, G. and Li, C. K. and Pollock, B. B. and Remington, B. A. and Ross, J. S. and Rozmus, W. and Sakawa, Y. and Spitkovsky, A. and Wilks, S. and Park, H.-S.},
abstractNote = {Astrophysical collisionless shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic plasma flows with the interstellar medium, supernova remnant shocks are observed to amplify magnetic fields1 and accelerate electrons and protons to highly relativistic speeds2,3,4. In the well-established model of diffusive shock acceleration5, relativistic particles are accelerated by repeated shock crossings. However, this requires a separate mechanism that pre-accelerates particles to enable shock crossing. This is known as the ‘injection problem’, which is particularly relevant for electrons, and remains one of the most important puzzles in shock acceleration6. In most astrophysical shocks, the details of the shock structure cannot be directly resolved, making it challenging to identify the injection mechanism. Here we report results from laser-driven plasma flow experiments, and related simulations, that probe the formation of turbulent collisionless shocks in conditions relevant to young supernova remnants. We show that electrons can be effectively accelerated in a first-order Fermi process by small-scale turbulence produced within the shock transition to relativistic non-thermal energies, helping overcome the injection problem. Our observations provide new insight into electron injection at shocks and open the way for controlled laboratory studies of the physics underlying cosmic accelerators.},
doi = {10.1038/s41567-020-0919-4},
journal = {Nature Physics},
number = 9,
volume = 16,
place = {United States},
year = {2020},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Origin of Ultra-High-Energy Cosmic Rays
journal, September 1984


High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers
journal, November 2008


Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
journal, July 2017


One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations
journal, November 2008


Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution
journal, February 1959


Mechanism for Instability of Transverse Plasma Waves
journal, January 1959


Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006
journal, November 1995

  • Koyama, K.; Petre, R.; Gotthelf, E. V.
  • Nature, Vol. 378, Issue 6554
  • DOI: 10.1038/378255a0

Magnetic field amplification in Tycho and other shell-type supernova remnants
journal, March 2005


Disruption of Current Filaments and Isotropization of the Magnetic Field in Counterstreaming Plasmas
journal, June 2018


Calibration of proton dispersion for the NIF electron positron proton spectrometer (NEPPS) for short-pulse laser experiments on the NIF ARC
journal, October 2018

  • Mariscal, D.; Williams, G. J.; Chen, H.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039388

Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
journal, January 2015

  • Huntington, C. M.; Fiuza, F.; Ross, J. S.
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3178

Basic scalings for collisionless-shock experiments in a plasma without pre-imposed magnetic field
journal, September 2012


Response functions of imaging plates to photons, electrons and 4 He particles
journal, October 2013

  • Bonnet, T.; Comet, M.; Denis-Petit, D.
  • Review of Scientific Instruments, Vol. 84, Issue 10
  • DOI: 10.1063/1.4826084

Nonrelativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas
journal, June 2008

  • Kato, Tsunehiko N.; Takabe, Hideaki
  • The Astrophysical Journal, Vol. 681, Issue 2
  • DOI: 10.1086/590387

Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave
journal, February 2015


Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?
journal, July 2008

  • Spitkovsky, Anatoly
  • The Astrophysical Journal, Vol. 682, Issue 1
  • DOI: 10.1086/590248

High-energy particle acceleration in the shell of a supernova remnant
journal, November 2004

  • Aharonian, F. A.; Akhperjanian, A. G.; Aye, K. -M.
  • Nature, Vol. 432, Issue 7013
  • DOI: 10.1038/nature02960

Electron acceleration by wave turbulence in a magnetized plasma
journal, March 2018


Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility
journal, May 2017


Detection of the Characteristic Pion-Decay Signature in Supernova Remnants
journal, February 2013


Nonthermal Electrons at High Mach Number Shocks: Electron Shock Surfing Acceleration
journal, June 2002

  • Hoshino, M.; Shimada, N.
  • The Astrophysical Journal, Vol. 572, Issue 2
  • DOI: 10.1086/340454

Filamentation Instability of Counterstreaming Laser-Driven Plasmas
journal, November 2013


Particle acceleration at astrophysical shocks: A theory of cosmic ray origin
journal, October 1987


OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators
book, January 2002

  • Fonseca, R. A.; Silva, L. O.; Tsung, F. S.
  • Computational Science — ICCS 2002, p. 342-351
  • DOI: 10.1007/3-540-47789-6_36

Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks
journal, September 2009


Bremsstrahlung photon emission rate from Maxwellian plasmas
journal, June 1972


Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas
journal, September 2012

  • Kugland, N. L.; Ryutov, D. D.; Chang, P-Y.
  • Nature Physics, Vol. 8, Issue 11
  • DOI: 10.1038/nphys2434

Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks
journal, May 2012

  • Ross, J. S.; Glenzer, S. H.; Amendt, P.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3694124

Long-Time Evolution of Magnetic Fields in Relativistic Gamma-Ray Burst Shocks
journal, December 2004

  • Medvedev, Mikhail V.; Fiore, Massimiliano; Fonseca, Ricardo A.
  • The Astrophysical Journal, Vol. 618, Issue 2
  • DOI: 10.1086/427921

Collisionless Shocks Driven by Supersonic Plasma Flows with Self-Generated Magnetic Fields
journal, July 2019


Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock
journal, June 2017


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740