DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes

Abstract

We report the formation mechanism and compositions of a solid-electrolyte interphase (SEI) on a microporous carbon/sulfur (MC/S) cathode in Li–S batteries using a carbonate-based electrolyte (1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate, v:v = 1:1). Through characterizations using 1D and 2D solution-phase nuclear magnetic resonance spectroscopy, coupled with model chemical reactions and DFT calculations, we have identified two critical roles of Li+ in steering the SEI formation. First, the preferential solvation of Li+ by EC in the mixed carbonate electrolyte renders EC as the dominant participant in the SEI formation, and second, Li+ coordination to the EC carbonyl alters activation barriers and changes the reaction pathways relative to Na+. The main organic components in the SEI are identified as lithium ethylene monocarbonate and lithium methyl carbonate, which are virtually identical to those formed on Li and graphite anodes of lithium-ion batteries but via a different pathway.

Authors:
ORCiD logo [1];  [2];  [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [5]
  1. Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry
  2. Michigan State Univ., East Lansing, MI (United States). Dept. of Chemical Engineering and Materials Science
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  4. Army Research Lab., Adelphi, MD (United States). Electrochemistry Branch, Power and Energy Division Sensor and Electron Devices Directorate
  5. Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry and Dept. of Chemical and Biomolecular Engineering
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1634803
Report Number(s):
SAND-2020-5284J
Journal ID: ISSN 0897-4756; 686230
Grant/Contract Number:  
AC04-94AL85000; SC0001160; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 9; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE; sulfur; electrodes; chemical reactions; inorganic carbon compounds; surface chemistry

Citation Formats

Wang, Luning, Lin, Yuxiao, DeCarlo, Samantha, Wang, Yi, Leung, Kevin, Qi, Yue, Xu, Kang, Wang, Chunsheng, and Eichhorn, Bryan W. Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes. United States: N. p., 2020. Web. doi:10.1021/acs.chemmater.9b05027.
Wang, Luning, Lin, Yuxiao, DeCarlo, Samantha, Wang, Yi, Leung, Kevin, Qi, Yue, Xu, Kang, Wang, Chunsheng, & Eichhorn, Bryan W. Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes. United States. https://doi.org/10.1021/acs.chemmater.9b05027
Wang, Luning, Lin, Yuxiao, DeCarlo, Samantha, Wang, Yi, Leung, Kevin, Qi, Yue, Xu, Kang, Wang, Chunsheng, and Eichhorn, Bryan W. Thu . "Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes". United States. https://doi.org/10.1021/acs.chemmater.9b05027. https://www.osti.gov/servlets/purl/1634803.
@article{osti_1634803,
title = {Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes},
author = {Wang, Luning and Lin, Yuxiao and DeCarlo, Samantha and Wang, Yi and Leung, Kevin and Qi, Yue and Xu, Kang and Wang, Chunsheng and Eichhorn, Bryan W.},
abstractNote = {We report the formation mechanism and compositions of a solid-electrolyte interphase (SEI) on a microporous carbon/sulfur (MC/S) cathode in Li–S batteries using a carbonate-based electrolyte (1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate, v:v = 1:1). Through characterizations using 1D and 2D solution-phase nuclear magnetic resonance spectroscopy, coupled with model chemical reactions and DFT calculations, we have identified two critical roles of Li+ in steering the SEI formation. First, the preferential solvation of Li+ by EC in the mixed carbonate electrolyte renders EC as the dominant participant in the SEI formation, and second, Li+ coordination to the EC carbonyl alters activation barriers and changes the reaction pathways relative to Na+. The main organic components in the SEI are identified as lithium ethylene monocarbonate and lithium methyl carbonate, which are virtually identical to those formed on Li and graphite anodes of lithium-ion batteries but via a different pathway.},
doi = {10.1021/acs.chemmater.9b05027},
journal = {Chemistry of Materials},
number = 9,
volume = 32,
place = {United States},
year = {Thu Apr 02 00:00:00 EDT 2020},
month = {Thu Apr 02 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Lithium-Sulfur Batteries: Progress and Prospects
journal, February 2015

  • Manthiram, Arumugam; Chung, Sheng-Heng; Zu, Chenxi
  • Advanced Materials, Vol. 27, Issue 12
  • DOI: 10.1002/adma.201405115

Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions
journal, March 2016

  • Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan
  • Chemistry - A European Journal, Vol. 22, Issue 22
  • DOI: 10.1002/chem.201600040

A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery
journal, January 2013

  • Barghamadi, Marzieh; Kapoor, Ajay; Wen, Cuie
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.096308jes

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

A review of electrolytes for lithium–sulphur batteries
journal, June 2014


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies
journal, October 2011

  • Gao, Jie; Lowe, Michael A.; Kiya, Yasuyuki
  • The Journal of Physical Chemistry C, Vol. 115, Issue 50, p. 25132-25137
  • DOI: 10.1021/jp207714c

Confined Sulfur in Microporous Carbon Renders Superior Cycling Stability in Li/S Batteries
journal, June 2015

  • Xu, Yunhua; Wen, Yang; Zhu, Yujie
  • Advanced Functional Materials, Vol. 25, Issue 27
  • DOI: 10.1002/adfm.201500983

Review—On the Mechanism of Quasi-Solid-State Lithiation of Sulfur Encapsulated in Microporous Carbons: Is the Existence of Small Sulfur Molecules Necessary?
journal, December 2016

  • Markevich, E.; Salitra, G.; Talyosef, Y.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0391701jes

Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries
journal, November 2015


High Performance C/S Composite Cathodes with Conventional Carbonate-Based Electrolytes in Li-S Battery
journal, April 2014

  • Zheng, Shiyou; Han, Pan; Han, Zhuo
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04842

Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries
journal, January 2012

  • Wang, Da-Wei; Zhou, Guangmin; Li, Feng
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 24
  • DOI: 10.1039/c2cp40808b

A Li+-conductive microporous carbon–sulfur composite for Li-S batteries
journal, January 2013


Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating
journal, May 2016


Enhancing the Stability of Sulfur Cathodes in Li–S Cells via in Situ Formation of a Solid Electrolyte Layer
journal, July 2016


Insight into the Electrode Mechanism in Lithium-Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode
journal, November 2013


In Situ Formed Lithium Sulfide/Microporous Carbon Cathodes for Lithium-Ion Batteries
journal, November 2013

  • Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404601h

Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries
journal, November 2011

  • Fanous, Jean; Wegner, Marcus; Grimminger, Jens
  • Chemistry of Materials, Vol. 23, Issue 22
  • DOI: 10.1021/cm202467u

Solid-State Lithium/Selenium-Sulfur Chemistry Enabled via a Robust Solid-Electrolyte Interphase
journal, November 2018


Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries
journal, July 2015

  • Helen, M.; Reddy, M. Anji; Diemant, Thomas
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12146

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Before Li Ion Batteries
journal, November 2018


Identifying the components of the solid–electrolyte interphase in Li-ion batteries
journal, August 2019


Facile Synthesis and Very Stable Cycling of Polyvinylidene Dichloride Derived Carbon: Sulfur Composite Cathode
journal, January 2016

  • Rosenman, A.; Markevich, E.; Salitra, G.
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0151609jes

Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries
journal, March 2008


An all‐electron numerical method for solving the local density functional for polyatomic molecules
journal, January 1990

  • Delley, B.
  • The Journal of Chemical Physics, Vol. 92, Issue 1
  • DOI: 10.1063/1.458452

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


13C Solid State NMR Suggests Unusual Breakdown Products in SEI Formation on Lithium Ion Electrodes
journal, January 2011

  • Leifer, N.; Smart, M. C.; Prakash, G. K. S.
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3559551

Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation
journal, November 2016


Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions
journal, January 1987

  • Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 134, Issue 7
  • DOI: 10.1149/1.2100722

Analysis of the Chemical Composition of the Passive Film on Li-Ion Battery Anodes Using Attentuated Total Reflection Infrared Spectroscopy
journal, January 2003

  • Zhuang, Guorong V.; Ross, Philip N.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 7
  • DOI: 10.1149/1.1575594

Study of SEI Layer Formed on Graphite Anodes in PC/LiBOB Electrolyte Using IR Spectroscopy
journal, January 2004

  • Zhuang, G. V.; Xu, K.; Jow, T. R.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 8
  • DOI: 10.1149/1.1756855

Investigating the solid electrolyte interphase using binder-free graphite electrodes
journal, January 2008


Examining the Solid Electrolyte Interphase on Binder-Free Graphite Electrodes
journal, January 2009

  • Xiao, Ang; Yang, Li; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 156, Issue 4
  • DOI: 10.1149/1.3078020

Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
journal, January 2013

  • Nie, Mengyun; Chalasani, Dinesh; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 3, p. 1257-1267
  • DOI: 10.1021/jp3118055

Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate
journal, September 2013

  • Shkrob, Ilya A.; Zhu, Ye; Marin, Timothy W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 38, p. 19270-19279
  • DOI: 10.1021/jp406273p

Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products
journal, December 2015


Electrochemical and Infrared Studies of the Reduction of Organic Carbonates
journal, January 2001

  • Zhang, Xuerong; Kostecki, Robert; Richardson, Thomas J.
  • Journal of The Electrochemical Society, Vol. 148, Issue 12
  • DOI: 10.1149/1.1415547

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:  Reduction Mechanisms of Ethylene Carbonate
journal, November 2001

  • Wang, Yixuan; Nakamura, Shinichiro; Ue, Makoto
  • Journal of the American Chemical Society, Vol. 123, Issue 47
  • DOI: 10.1021/ja0164529

A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy
journal, January 2005

  • Zhuang, Guorong V.; Yang, Hui; Blizanac, Berislav
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 9
  • DOI: 10.1149/1.1979327

A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy
journal, February 2015

  • Shi, Feifei; Ross, Philip N.; Zhao, Hui
  • Journal of the American Chemical Society, Vol. 137, Issue 9
  • DOI: 10.1021/ja5128456

Formation mechanism of alkyl dicarbonates in Li-ion cells
journal, October 2005


Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy
journal, July 2010


Understanding Li + –Solvent Interaction in Nonaqueous Carbonate Electrolytes with 17 O NMR
journal, May 2013

  • Bogle, Xavier; Vazquez, Rafael; Greenbaum, Steven
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 10
  • DOI: 10.1021/jz400661k

Preferential Solvation of Li+ Directs Formation of Interphase on Graphitic Anode
journal, January 2011

  • von Cresce, Arthur; Xu, Kang
  • Electrochemical and Solid-State Letters, Vol. 14, Issue 10
  • DOI: 10.1149/1.3615828

Li + -solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells
journal, August 2012

  • Xu, Kang; von Wald Cresce, Arthur
  • Journal of Materials Research, Vol. 27, Issue 18
  • DOI: 10.1557/jmr.2012.104

Binding of Ether and Carbonyl Oxygens to Lithium Ion
journal, January 1995

  • Blint, Richard J.
  • Journal of The Electrochemical Society, Vol. 142, Issue 3
  • DOI: 10.1149/1.2048519

Li+ solvation in ethylene carbonate–propylene carbonate concentrated solutions: A comprehensive model
journal, October 1997

  • Cazzanelli, E.; Croce, Fausto; Appetecchi, Giovanni Battista
  • The Journal of Chemical Physics, Vol. 107, Issue 15
  • DOI: 10.1063/1.474334

Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure
journal, November 2017


Hybrid Aqueous/Non-aqueous Electrolyte for Safe and High-Energy Li-Ion Batteries
journal, May 2018


Correlating Li + Solvation Sheath Structure with Interphasial Chemistry on Graphite
journal, December 2012

  • von Wald Cresce, Arthur; Borodin, Oleg; Xu, Kang
  • The Journal of Physical Chemistry C, Vol. 116, Issue 50
  • DOI: 10.1021/jp303610t

Solvation Sheath of Li + in Nonaqueous Electrolytes and Its Implication of Graphite/Electrolyte Interface Chemistry
journal, May 2007

  • Xu, Kang; Lam, Yiufai; Zhang, Sheng S.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 20
  • DOI: 10.1021/jp068691u

Crystal structure of dilithiumsulfíde, Li2S
journal, September 1999

  • Kubel, F.; Bertheville, Β.; Bill, Η.
  • Zeitschrift für Kristallographie - New Crystal Structures, Vol. 214, Issue 3
  • DOI: 10.1515/ncrs-1999-0303