DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material

Abstract

Anisotropic carrier transport properties of unintentionally doped InAs/InAs0.65Sb0.35 type-II strain-balanced superlattice material are evaluated using temperature- and field-dependent magnetotransport measurements performed in the vertical direction on a substrate-removed metal-semiconductor-metal device structure. To best isolate the measured transport to the superlattice, device fabrication entails flip-chip bonding and backside device processing to remove the substrate material and deposit contact metal directly to the bottom of an etched mesa. Here, high-resolution mobility spectrum analysis is used to calculate the conductance contribution and corrected mixed vertical-lateral mobility of the two carrier species present. Combining the latter with lateral mobility results from in-plane magnetotransport measurements on identical superlattice material allows for the calculation of the true vertical majority electron and minority hole mobilities; amplitudes of 4.7 ×103 cm2/V s and 1.60 cm2/V s are determined at 77 K, respectively. The temperature-dependent results show that vertical hole mobility rapidly decreases with decreasing temperature due to trap-induced localization and then hopping transport, whereas vertical electron mobility appears phonon scattering-limited at high temperature, giving way to interface roughness scattering at low temperatures, analogous to the lateral electron mobility but with a lower overall magnitude.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3];  [2]; ORCiD logo [4];  [1];  [5];  [3]; ORCiD logo [6]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Air Force Research Lab. (AFRL), Kirtland AFB, NM (United States). Space Vehicles Directorate
  3. Univ. of Western Australia, Crawley, WA (Australia). Dept. of Electrical, Electronic, and Computer Engineering
  4. Air Force Research Lab. (AFRL), Kirtland AFB, NM (United States). Space Vehicles Directorate; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Nuclear Science and Engineering
  5. Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials (CHTM)
  6. The Ohio State Univ., Columbus, OH (United States). Dept. of Electrical and Computer Engineering
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES); US Army Research Office (ARO); Australian Research Council; Australian National Fabrication Facility (ANFF)
OSTI Identifier:
1634793
Alternate Identifier(s):
OSTI ID: 1617763
Report Number(s):
SAND-2020-4520J
Journal ID: ISSN 0003-6951; 685777; TRN: US2201394
Grant/Contract Number:  
AC04-94AL85000; NA0003525; W911NF-16-2-0068; DP140103667; DP170104555
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 116; Journal Issue: 18; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; lattice scattering; phonon scattering; flip chip; electronic transport; hall effect; superlattices; hopping transport; semiconductors; transport properties; magnetic fields

Citation Formats

Casias, Lilian K., Morath, Christian P., Steenbergen, Elizabeth H., Umana-Membreno, Gilberto A., Webster, Preston T., Logan, Julie V., Kim, Jin K., Balakrishnan, Ganesh, Faraone, Lorenzo, and Krishna, Sanjay. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. United States: N. p., 2020. Web. doi:10.1063/1.5144079.
Casias, Lilian K., Morath, Christian P., Steenbergen, Elizabeth H., Umana-Membreno, Gilberto A., Webster, Preston T., Logan, Julie V., Kim, Jin K., Balakrishnan, Ganesh, Faraone, Lorenzo, & Krishna, Sanjay. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. United States. https://doi.org/10.1063/1.5144079
Casias, Lilian K., Morath, Christian P., Steenbergen, Elizabeth H., Umana-Membreno, Gilberto A., Webster, Preston T., Logan, Julie V., Kim, Jin K., Balakrishnan, Ganesh, Faraone, Lorenzo, and Krishna, Sanjay. Fri . "Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material". United States. https://doi.org/10.1063/1.5144079. https://www.osti.gov/servlets/purl/1634793.
@article{osti_1634793,
title = {Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material},
author = {Casias, Lilian K. and Morath, Christian P. and Steenbergen, Elizabeth H. and Umana-Membreno, Gilberto A. and Webster, Preston T. and Logan, Julie V. and Kim, Jin K. and Balakrishnan, Ganesh and Faraone, Lorenzo and Krishna, Sanjay},
abstractNote = {Anisotropic carrier transport properties of unintentionally doped InAs/InAs0.65Sb0.35 type-II strain-balanced superlattice material are evaluated using temperature- and field-dependent magnetotransport measurements performed in the vertical direction on a substrate-removed metal-semiconductor-metal device structure. To best isolate the measured transport to the superlattice, device fabrication entails flip-chip bonding and backside device processing to remove the substrate material and deposit contact metal directly to the bottom of an etched mesa. Here, high-resolution mobility spectrum analysis is used to calculate the conductance contribution and corrected mixed vertical-lateral mobility of the two carrier species present. Combining the latter with lateral mobility results from in-plane magnetotransport measurements on identical superlattice material allows for the calculation of the true vertical majority electron and minority hole mobilities; amplitudes of 4.7 ×103 cm2/V s and 1.60 cm2/V s are determined at 77 K, respectively. The temperature-dependent results show that vertical hole mobility rapidly decreases with decreasing temperature due to trap-induced localization and then hopping transport, whereas vertical electron mobility appears phonon scattering-limited at high temperature, giving way to interface roughness scattering at low temperatures, analogous to the lateral electron mobility but with a lower overall magnitude.},
doi = {10.1063/1.5144079},
journal = {Applied Physics Letters},
number = 18,
volume = 116,
place = {United States},
year = {2020},
month = {5}
}

Works referenced in this record:

Calculation of vertical and horizontal mobilities in InAs/GaSb superlattices
journal, October 2011


Transport properties of holes in bulk InAsSb and performance of barrier long-wavelength infrared detectors
journal, October 2014


Modified electron beam induced current technique for in(Ga)As/InAsSb superlattice infrared detectors
journal, August 2017

  • Yoon, N.; Reyner, C. J.; Ariyawansa, G.
  • Journal of Applied Physics, Vol. 122, Issue 7
  • DOI: 10.1063/1.4998454

All-optical measurement of vertical charge carrier transport in mid-wave infrared InAs/GaSb type-II superlattices
journal, May 2013

  • Olson, B. V.; Murray, L. M.; Prineas, J. P.
  • Applied Physics Letters, Vol. 102, Issue 20
  • DOI: 10.1063/1.4807433

Intrinsic broadening of the mobility spectrum of bulk n-type GaAs
journal, November 2014


Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors
journal, February 2015

  • Zuo, Daniel; Liu, Runyu; Wasserman, Daniel
  • Applied Physics Letters, Vol. 106, Issue 7
  • DOI: 10.1063/1.4913312

Vertical Hole Transport and Carrier Localization in InAs / InAs 1 x Sb x Type-II Superlattice Heterojunction Bipolar Transistors
journal, February 2017


Carrier concentration and transport in Be-doped InAsSb for infrared sensing applications
journal, January 2019


Vertical minority carrier electron transport in p-type InAs/GaSb type-II superlattices
journal, December 2012

  • Umana-Membreno, G. A.; Klein, B.; Kala, H.
  • Applied Physics Letters, Vol. 101, Issue 25
  • DOI: 10.1063/1.4772954

Influence of carrier localization on minority carrier lifetime in InAs/InAsSb type-II superlattices
journal, November 2015

  • Lin, Zhi-Yuan; Liu, Shi; Steenbergen, Elizabeth H.
  • Applied Physics Letters, Vol. 107, Issue 20
  • DOI: 10.1063/1.4936109

Epitaxial lift-off of thin InAs layers
journal, June 1995

  • Fastenau, Joel; özbay, Ekmel; Tuttle, Gary
  • Journal of Electronic Materials, Vol. 24, Issue 6
  • DOI: 10.1007/BF02659736

Multiple growths of epitaxial lift-off solar cells from a single InP substrate
journal, September 2010

  • Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.
  • Applied Physics Letters, Vol. 97, Issue 10
  • DOI: 10.1063/1.3479906

Method for the simultaneous determination of vertical and horizontal mobilities in superlattices
journal, February 2014


More Accurate Quantum Efficiency Damage Factor for Proton-Irradiated, III-V-Based Unipolar Barrier Infrared Detectors
journal, January 2017

  • Morath, Christian P.; Garduno, Eli A.; Cowan, Vincent M.
  • IEEE Transactions on Nuclear Science, Vol. 64, Issue 1
  • DOI: 10.1109/TNS.2016.2634500

Selective and non-selective wet-chemical etchants for GaSb-based materials
journal, September 2004


High-Resolution Mobility Spectrum Analysis of Multicarrier Transport in Advanced Infrared Materials
journal, February 2012

  • Antoszewski, J.; Umana-Membreno, G. A.; Faraone, L.
  • Journal of Electronic Materials, Vol. 41, Issue 10
  • DOI: 10.1007/s11664-012-1978-9

Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices
journal, July 2017


Electron mobility in modulation-doped AlSb/InAs quantum wells
journal, April 2011

  • Li, Yanbo; Zhang, Yang; Zeng, Yiping
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3552417