skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 1, 2021

Title: Neutron yield enhancement and suppression by magnetization in laser-driven cylindrical implosions

Abstract

In inertial confinement fusion, an externally applied magnetic field can reduce heat losses in the compressing fuel thereby increasing neutron-averaged ion temperatures and neutron yields. Yet, magnetization is only beneficial if the magnetic pressure remains negligible compared to the fuel pressure. Experiments and three-dimensional magneto-hydrodynamic simulations of cylindrical implosions on the OMEGA laser show ion temperature and neutron yield enhancements of up to 44% and 67%, respectively. As the applied, axial magnetic field is increased to nearly 30T, both experiments and simulations show yield degradation. For magnetized, cylindrical implosions, there exists an optimal magnetic field that maximizes the increase in yield. Limiting the fuel convergence ratio by preheating the fuel can further increase the benefit of magnetization. The findings demonstrate that it is possible to create a plasma with a density of order 1 g/cm3 and an ion temperature greater than 1 keV with a magnetic pressure comparable to the thermal pressure, a new regime for laser-produced plasmas on OMEGA.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [2];  [2]; ORCiD logo [2]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Univ. of Chicago, IL (United States)
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1633854
Alternate Identifier(s):
OSTI ID: 1631389
Report Number(s):
2019-320, 1567, 2523
Journal ID: ISSN 1070-664X; 2019-320, 1567, 2523
Grant/Contract Number:  
NA0003856; SC0016258; AR0000568; NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 6; Conference: 61. Annual Meeting of the APS Division of Plasma Physics, Fort Lauderdale, FL (United States), 21-25 Oct 2019; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Magnetic fields; Neutrons; Magnetohydrodynamics

Citation Formats

Hansen, E. C., Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Glebov, V. Yu., Knauer, J. P., Leal, L. S., Peebles, J. L., Sefkow, A. B., and Woo, K. M. Neutron yield enhancement and suppression by magnetization in laser-driven cylindrical implosions. United States: N. p., 2020. Web. doi:10.1063/1.5144447.
Hansen, E. C., Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Glebov, V. Yu., Knauer, J. P., Leal, L. S., Peebles, J. L., Sefkow, A. B., & Woo, K. M. Neutron yield enhancement and suppression by magnetization in laser-driven cylindrical implosions. United States. doi:https://doi.org/10.1063/1.5144447
Hansen, E. C., Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Glebov, V. Yu., Knauer, J. P., Leal, L. S., Peebles, J. L., Sefkow, A. B., and Woo, K. M. Mon . "Neutron yield enhancement and suppression by magnetization in laser-driven cylindrical implosions". United States. doi:https://doi.org/10.1063/1.5144447.
@article{osti_1633854,
title = {Neutron yield enhancement and suppression by magnetization in laser-driven cylindrical implosions},
author = {Hansen, E. C. and Davies, J. R. and Barnak, D. H. and Betti, R. and Campbell, E. M. and Glebov, V. Yu. and Knauer, J. P. and Leal, L. S. and Peebles, J. L. and Sefkow, A. B. and Woo, K. M.},
abstractNote = {In inertial confinement fusion, an externally applied magnetic field can reduce heat losses in the compressing fuel thereby increasing neutron-averaged ion temperatures and neutron yields. Yet, magnetization is only beneficial if the magnetic pressure remains negligible compared to the fuel pressure. Experiments and three-dimensional magneto-hydrodynamic simulations of cylindrical implosions on the OMEGA laser show ion temperature and neutron yield enhancements of up to 44% and 67%, respectively. As the applied, axial magnetic field is increased to nearly 30T, both experiments and simulations show yield degradation. For magnetized, cylindrical implosions, there exists an optimal magnetic field that maximizes the increase in yield. Limiting the fuel convergence ratio by preheating the fuel can further increase the benefit of magnetization. The findings demonstrate that it is possible to create a plasma with a density of order 1 g/cm3 and an ion temperature greater than 1 keV with a magnetic pressure comparable to the thermal pressure, a new regime for laser-produced plasmas on OMEGA.},
doi = {10.1063/1.5144447},
journal = {Physics of Plasmas},
number = 6,
volume = 27,
place = {United States},
year = {2020},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 1, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Collisional effects on Rayleigh-Taylor-induced magnetic fieldsa)
journal, May 2015

  • Manuel, M. J. -E.; Flaig, M.; Plewa, T.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4919392

Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
journal, January 2015

  • Fiksel, G.; Agliata, A.; Barnak, D.
  • Review of Scientific Instruments, Vol. 86, Issue 1
  • DOI: 10.1063/1.4905625

Impact of three-dimensional hot-spot flow asymmetry on ion-temperature measurements in inertial confinement fusion experiments
journal, October 2018

  • Woo, K. M.; Betti, R.; Shvarts, D.
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5048429

Compressing magnetic fields with high-energy lasers
journal, May 2010

  • Knauer, J. P.; Gotchev, O. V.; Chang, P. Y.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3416557

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
journal, July 2011


High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion
journal, November 2005


The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
journal, November 2015

  • Davies, J. R.; Betti, R.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935286

Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions
journal, February 2019

  • Walsh, C. A.; McGlinchey, K.; Tong, J. K.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5085498

Parameter space for magnetized fuel targets in inertial confinement fusion
journal, March 1983


An extended study of the ignition design space of magnetized target fusion
journal, March 2017


Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field
journal, May 2014

  • Awe, T. J.; Jennings, C. A.; McBride, R. D.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872331

The fundamental parameter space of controlled thermonuclear fusion
journal, May 2009

  • Lindemuth, Irvin R.; Siemon, Richard E.
  • American Journal of Physics, Vol. 77, Issue 5
  • DOI: 10.1119/1.3096646

Optimization of laser-driven cylindrical implosions on the OMEGA laser
journal, December 2018

  • Hansen, E. C.; Barnak, D. H.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5055776

Laser-Driven Magnetic-Flux Compression in High-Energy-Density Plasmas
journal, November 2009


Experimental configuration of direct drive cylindrical implosions on the OMEGA laser
journal, January 1999

  • Barnes, Cris W.; Tubbs, David L.; Beck, J. B.
  • Review of Scientific Instruments, Vol. 70, Issue 1
  • DOI: 10.1063/1.1149480

Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser
journal, May 2012

  • Hohenberger, M.; Chang, P. -Y.; Fiksel, G.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3696032

Ion temperature measurements of indirect-drive implosions with the neutron time-of-flight detector on SG-III laser facility
journal, February 2018

  • Chen, Zhongjing; Zhang, Xing; Pu, Yudong
  • Review of Scientific Instruments, Vol. 89, Issue 2
  • DOI: 10.1063/1.5022767

Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation
journal, January 1986

  • Epperlein, E. M.; Haines, M. G.
  • Physics of Fluids, Vol. 29, Issue 4
  • DOI: 10.1063/1.865901

Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

The ignition design space of magnetized target fusion
journal, December 2015


Enhancing performance of magnetized liner inertial fusion at the Z facility
journal, November 2018

  • Slutz, S. A.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 25, Issue 11
  • DOI: 10.1063/1.5054317

Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion
journal, June 2018

  • Davies, J. R.; Bahr, R. E.; Barnak, D. H.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5030107

The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion
journal, June 2017

  • Perkins, L. J.; Ho, D. D. -M; Logan, B. G.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4985150

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion
journal, February 2019

  • Davies, J. R.; Barnak, D. H.; Betti, R.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5082960

Formation of tight plasma pinches and generation of high-power soft x-ray radiation pulses in fast Z-pinch implosions
journal, January 2006


Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser
journal, April 2018

  • Hansen, E. C.; Barnak, D. H.; Betti, R.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 5
  • DOI: 10.1088/1361-6587/aab73f

Three‐dimensional simulations of Nova high growth factor capsule implosion experiments
journal, May 1996

  • Marinak, M. M.; Tipton, R. E.; Landen, O. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872004

Laser-driven magnetized liner inertial fusion on OMEGA
journal, May 2017

  • Barnak, D. H.; Davies, J. R.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982692

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
journal, July 2013

  • Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816813

Laser-driven magnetized liner inertial fusion
journal, June 2017

  • Davies, J. R.; Barnak, D. H.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4984779

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740