skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Response of Pseudomonas putida to Complex, Aromatic-Rich Fractions from Biomass

Abstract

There is strong interest in the valorization of lignin to produce valuable products; however, its structural complexity has been a conversion bottleneck. Chemical pretreatment liberates lignin-derived soluble fractions that may be upgraded by bioconversion. Here, cholinium ionic liquid pretreatment of sorghum produced soluble, aromatic-rich fractions that were converted by Pseudomonas putida (P. putida), a promising host for aromatic bioconversion. Growth studies and mutational analysis demonstrated that P. putida growth on these fractions was dependent on aromatic monomers but unknown factors also contributed. Proteomic and metabolomic analyses indicated that these unknown factors were amino acids and residual ionic liquid; the oligomeric aromatic fraction derived from lignin was not converted. A cholinium catabolic pathway was identified, and the deletion of the pathway stopped the ability of P. putida to grow on cholinium ionic liquid. This work demonstrates that aromatic-rich fractions obtained through pretreatment contain multiple substrates; conversion strategies should account for this complexity.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [3];  [4];  [5];  [6];  [1]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Inst. and Biological Systems and Engineering Division
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Inst.
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Institute and Biological Systems and Engineering Division
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Inst.; Sandia National Lab. (SNL-CA), Livermore, CA (United States). Biomass Science and Conversion Technology
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Inst. and Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Inst. and Biological Systems and Engineering Division; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering and Dept. of Chemical & Biomolecular Engineering,; Danish Technical Univ.,Lyngby (Denmark). Center for Biosustainability; Shenzhen Inst. for Advanced Technology (China). Inst. for Synthetic Biology, Center for Synthetic Biochemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1633268
Alternate Identifier(s):
OSTI ID: 1616632
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: 13; Journal Issue: 17; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 09 BIOMASS FUELS; biomass; biotransformations; enzymes; ionic liquids; proteomics; base-catalyzed depolymerization; lignin-derived aromatic monomer; lignin valorization

Citation Formats

Park, Mee‐Rye, Chen, Yan, Thompson, Mitchell, Benites, Veronica T., Fong, Bonnie, Petzold, Christopher J., Baidoo, Edward E. K., Gladden, John M., Adams, Paul D., Keasling, Jay D., Simmons, Blake A., and Singer, Steven W. Response of Pseudomonas putida to Complex, Aromatic-Rich Fractions from Biomass. United States: N. p., 2020. Web. https://doi.org/10.1002/cssc.202000268.
Park, Mee‐Rye, Chen, Yan, Thompson, Mitchell, Benites, Veronica T., Fong, Bonnie, Petzold, Christopher J., Baidoo, Edward E. K., Gladden, John M., Adams, Paul D., Keasling, Jay D., Simmons, Blake A., & Singer, Steven W. Response of Pseudomonas putida to Complex, Aromatic-Rich Fractions from Biomass. United States. https://doi.org/10.1002/cssc.202000268
Park, Mee‐Rye, Chen, Yan, Thompson, Mitchell, Benites, Veronica T., Fong, Bonnie, Petzold, Christopher J., Baidoo, Edward E. K., Gladden, John M., Adams, Paul D., Keasling, Jay D., Simmons, Blake A., and Singer, Steven W. Wed . "Response of Pseudomonas putida to Complex, Aromatic-Rich Fractions from Biomass". United States. https://doi.org/10.1002/cssc.202000268. https://www.osti.gov/servlets/purl/1633268.
@article{osti_1633268,
title = {Response of Pseudomonas putida to Complex, Aromatic-Rich Fractions from Biomass},
author = {Park, Mee‐Rye and Chen, Yan and Thompson, Mitchell and Benites, Veronica T. and Fong, Bonnie and Petzold, Christopher J. and Baidoo, Edward E. K. and Gladden, John M. and Adams, Paul D. and Keasling, Jay D. and Simmons, Blake A. and Singer, Steven W.},
abstractNote = {There is strong interest in the valorization of lignin to produce valuable products; however, its structural complexity has been a conversion bottleneck. Chemical pretreatment liberates lignin-derived soluble fractions that may be upgraded by bioconversion. Here, cholinium ionic liquid pretreatment of sorghum produced soluble, aromatic-rich fractions that were converted by Pseudomonas putida (P. putida), a promising host for aromatic bioconversion. Growth studies and mutational analysis demonstrated that P. putida growth on these fractions was dependent on aromatic monomers but unknown factors also contributed. Proteomic and metabolomic analyses indicated that these unknown factors were amino acids and residual ionic liquid; the oligomeric aromatic fraction derived from lignin was not converted. A cholinium catabolic pathway was identified, and the deletion of the pathway stopped the ability of P. putida to grow on cholinium ionic liquid. This work demonstrates that aromatic-rich fractions obtained through pretreatment contain multiple substrates; conversion strategies should account for this complexity.},
doi = {10.1002/cssc.202000268},
journal = {ChemSusChem},
number = 17,
volume = 13,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Polyesters of 2-Pyrone-4,6-Dicarboxylic Acid (PDC) Obtained from a Metabolic Intermediate of Lignin
journal, November 2007


Saccharomyces cerevisiae-Based Molecular Tool Kit for Manipulation of Genes from Gram-Negative Bacteria
journal, July 2006

  • Shanks, Robert; Caiazza, Nicky; Hinsa, Shannon
  • Applied and Environmental Microbiology, Vol. 72, Issue 7, p. 5027-5036
  • DOI: 10.1128/AEM.00682-06

Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2
journal, May 2011

  • Hallett, Jason P.; Welton, Tom
  • Chemical Reviews, Vol. 111, Issue 5
  • DOI: 10.1021/cr1003248

Standard Flow Liquid Chromatography for Shotgun Proteomics in Bioenergy Research
journal, April 2015

  • González Fernández-Niño, Susana M.; Smith-Moritz, A. Michelle; Chan, Leanne Jade G.
  • Frontiers in Bioengineering and Biotechnology, Vol. 3
  • DOI: 10.3389/fbioe.2015.00044

Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin
journal, January 2020

  • Salvachúa, Davinia; Rydzak, Thomas; Auwae, Raquel
  • Microbial Biotechnology, Vol. 13, Issue 1
  • DOI: 10.1111/1751-7915.13481

Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) with a broad range of 3HV content at high yields by Burkholderia sacchari IPT 189
journal, July 2007

  • Rocha, Rafael C. S.; da Silva, Luiziana F.; Taciro, Marilda K.
  • World Journal of Microbiology and Biotechnology, Vol. 24, Issue 3
  • DOI: 10.1007/s11274-007-9480-x

Microbial utilization and biopolyester synthesis of bagasse hydrolysates
journal, November 2008


Structural Analysis of Wheat Straw Lignin by Quantitative 31 P and 2D NMR Spectroscopy. The Occurrence of Ester Bonds and α-O-4 Substructures
journal, April 1997

  • Crestini, Claudia; Argyropoulos, Dimitris S.
  • Journal of Agricultural and Food Chemistry, Vol. 45, Issue 4
  • DOI: 10.1021/jf960568k

Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria
journal, January 2015

  • Salvachúa, Davinia; Karp, Eric M.; Nimlos, Claire T.
  • Green Chemistry, Vol. 17, Issue 11
  • DOI: 10.1039/C5GC01165E

j5 DNA Assembly Design Automation Software
journal, December 2011

  • Hillson, Nathan J.; Rosengarten, Rafael D.; Keasling, Jay D.
  • ACS Synthetic Biology, Vol. 1, Issue 1, p. 14-21
  • DOI: 10.1021/sb2000116

Homeostasis and Catabolism of Choline and Glycine Betaine: Lessons from Pseudomonas aeruginosa
journal, January 2013

  • Wargo, Matthew J.
  • Applied and Environmental Microbiology, Vol. 79, Issue 7
  • DOI: 10.1128/AEM.03565-12

Evaluation of two autoinducer-2 quantification methods for application in marine environments
journal, March 2018

  • Wang, T. -N.; Kaksonen, A. H.; Hong, P. -Y.
  • Journal of Applied Microbiology, Vol. 124, Issue 6
  • DOI: 10.1111/jam.13725

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007

  • Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.
  • Science, Vol. 315, Issue 5813, p. 804-807
  • DOI: 10.1126/science.1137016

Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls
journal, January 2004


Protein content and amino acid composition of some varieties of grain sorghum
journal, March 1968

  • Virupaksha, T. K.; Sastry, L. V. S.
  • Journal of Agricultural and Food Chemistry, Vol. 16, Issue 2
  • DOI: 10.1021/jf60156a022

Purification and characterization of isocitrate lyase fromEscherichia coli
journal, November 1986

  • Robertson, Eugene F.; Reeves, Henry C.
  • Current Microbiology, Vol. 14, Issue 6
  • DOI: 10.1007/BF01568702

Lignin valorization through integrated biological funneling and chemical catalysis
journal, August 2014

  • Linger, J. G.; Vardon, D. R.; Guarnieri, M. T.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 33, p. 12013-12018
  • DOI: 10.1073/pnas.1410657111

Comparison of alkali treatments for efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith
journal, May 2016


The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation
journal, March 2005


Enzymatic assembly of DNA molecules up to several hundred kilobases
journal, April 2009

  • Gibson, Daniel G.; Young, Lei; Chuang, Ray-Yuan
  • Nature Methods, Vol. 6, Issue 5, p. 343-345
  • DOI: 10.1038/nmeth.1318

Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440
journal, December 2017

  • Johnson, Christopher W.; Abraham, Paul E.; Linger, Jeffrey G.
  • Metabolic Engineering Communications, Vol. 5
  • DOI: 10.1016/j.meteno.2017.05.002

Structural Characterization of Wheat Straw Lignin as Revealed by Analytical Pyrolysis, 2D-NMR, and Reductive Cleavage Methods
journal, December 2011

  • del Río, José C.; Rencoret, Jorge; Prinsen, Pepijn
  • Journal of Agricultural and Food Chemistry, Vol. 60, Issue 23
  • DOI: 10.1021/jf301002n

Lignin to lipid bioconversion by oleaginous Rhodococci
journal, January 2013

  • Kosa, Matyas; Ragauskas, Arthur J.
  • Green Chemistry, Vol. 15, Issue 8
  • DOI: 10.1039/c3gc40434j

Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440
journal, December 2002


Lignin Valorization: Improving Lignin Processing in the Biorefinery
journal, May 2014

  • Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.
  • Science, Vol. 344, Issue 6185, p. 1246843-1246843
  • DOI: 10.1126/science.1246843

The effects of model aromatic lignin compounds on growth and lipid accumulation of Rhodococcus rhodochrous
journal, July 2017

  • Shields-Menard, Sara A.; AmirSadeghi, Marta; Green, Magan
  • International Biodeterioration & Biodegradation, Vol. 121
  • DOI: 10.1016/j.ibiod.2017.03.023

Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost
journal, March 2017

  • Ravi, Krithika; García-Hidalgo, Javier; Gorwa-Grauslund, Marie F.
  • Applied Microbiology and Biotechnology, Vol. 101, Issue 12
  • DOI: 10.1007/s00253-017-8211-y

Sequential fractionation of the lignocellulosic components in hardwood based on steam explosion and hydrotropic extraction
journal, January 2019


Organosolv lignin depolymerization with different base catalysts
journal, April 2012

  • Toledano, Ana; Serrano, Luis; Labidi, Jalel
  • Journal of Chemical Technology & Biotechnology, Vol. 87, Issue 11
  • DOI: 10.1002/jctb.3799

Hydrogenolysis of biorefinery corncob lignin into aromatic phenols over activated carbon-supported nickel
journal, January 2019

  • Wang, Shuizhong; Gao, Wa; Xiao, Ling-Ping
  • Sustainable Energy & Fuels, Vol. 3, Issue 2
  • DOI: 10.1039/C8SE00359A

Pathways for degradation of lignin in bacteria and fungi
journal, January 2011

  • Bugg, Timothy D. H.; Ahmad, Mark; Hardiman, Elizabeth M.
  • Natural Product Reports, Vol. 28, Issue 12, p. 1883-1896
  • DOI: 10.1039/c1np00042j

Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis
journal, November 2014

  • de Oliveira, Dyoni Matias; Finger-Teixeira, Aline; Rodrigues Mota, Thatiane
  • Plant Biotechnology Journal, Vol. 13, Issue 9
  • DOI: 10.1111/pbi.12292

Construction ofpha-Operon-Defined Knockout Mutants ofPseudomonas putida KT2442 and their Applications in Poly(hydroxyalkanoate) Production
journal, February 2007

  • Ouyang, Shao-Ping; Liu, Qian; Fang, Lei
  • Macromolecular Bioscience, Vol. 7, Issue 2
  • DOI: 10.1002/mabi.200600187

Whole plant cell wall characterization using solution-state 2D NMR
journal, August 2012


Acetate scavenging activity in Escherichia coli: interplay of acetyl–CoA synthetase and the PEP–glyoxylate cycle in chemostat cultures
journal, September 2011

  • Renilla, Sergio; Bernal, Vicente; Fuhrer, Tobias
  • Applied Microbiology and Biotechnology, Vol. 93, Issue 5
  • DOI: 10.1007/s00253-011-3536-4

HipA-Triggered Growth Arrest and β-Lactam Tolerance in Escherichia coli Are Mediated by RelA-Dependent ppGpp Synthesis
journal, May 2013

  • Bokinsky, G.; Baidoo, E. E. K.; Akella, S.
  • Journal of Bacteriology, Vol. 195, Issue 14, p. 3173-3182
  • DOI: 10.1128/JB.02210-12

2016 update of the PRIDE database and its related tools
journal, November 2015

  • Vizcaíno, Juan Antonio; Csordas, Attila; del-Toro, Noemi
  • Nucleic Acids Research, Vol. 44, Issue D1
  • DOI: 10.1093/nar/gkv1145

Base-Catalyzed Depolymerization of Biorefinery Lignins
journal, December 2015


Identification of Two Gene Clusters and a Transcriptional Regulator Required for Pseudomonas aeruginosa Glycine Betaine Catabolism
journal, October 2007

  • Wargo, M. J.; Szwergold, B. S.; Hogan, D. A.
  • Journal of Bacteriology, Vol. 190, Issue 8
  • DOI: 10.1128/JB.01393-07

The Catalytic Valorization of Lignin for the Production of Renewable Chemicals
journal, June 2010

  • Zakzeski, Joseph; Bruijnincx, Pieter C. A.; Jongerius, Anna L.
  • Chemical Reviews, Vol. 110, Issue 6, p. 3552-3599
  • DOI: 10.1021/cr900354u

Adipic acid production from lignin
journal, January 2015

  • Vardon, Derek R.; Franden, Mary Ann; Johnson, Christopher W.
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03230F

Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli
journal, January 2013

  • Eudes, Aymerick; Juminaga, Darmawi; Baidoo, Edward E. K.
  • Microbial Cell Factories, Vol. 12, Issue 1
  • DOI: 10.1186/1475-2859-12-62

Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism
journal, November 2018


Across the Board: Mark Mascal on the Challenges of Lignin Biorefining
journal, December 2019


Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers
journal, January 2015

  • Isikgor, Furkan H.; Becer, C. Remzi
  • Polymer Chemistry, Vol. 6, Issue 25
  • DOI: 10.1039/C5PY00263J

Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5
journal, January 2010

  • Kim, Hoon; Ralph, John
  • Org. Biomol. Chem., Vol. 8, Issue 3
  • DOI: 10.1039/B916070A

Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the Acid-Catalyzed Depolymerization of Lignin
journal, June 2015

  • Deuss, Peter J.; Scott, Martin; Tran, Fanny
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b03693

DeviceEditor visual biological CAD canvas
journal, December 2012

  • Chen, Joanna; Densmore, Douglas; Ham, Timothy S.
  • Journal of Biological Engineering, Vol. 6, Issue 1
  • DOI: 10.1186/1754-1611-6-1

One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids
journal, January 2017

  • Sun, Jian; Konda, N. V. S. N. Murthy; Parthasarathi, Ramakrishnan
  • Green Chemistry, Vol. 19, Issue 13
  • DOI: 10.1039/C7GC01179B

Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy
journal, June 2008

  • Yelle, Daniel J.; Ralph, John; Frihart, Charles R.
  • Magnetic Resonance in Chemistry, Vol. 46, Issue 6
  • DOI: 10.1002/mrc.2201

Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar
journal, April 2017


Pathway of p-Coumaric Acid Incorporation into Maize Lignin As Revealed by NMR
journal, October 1994

  • Ralph, John; Hatfield, Ronald D.; Quideau, Stephane
  • Journal of the American Chemical Society, Vol. 116, Issue 21, p. 9448-9456
  • DOI: 10.1021/ja00100a006

Hydrothermal Liquefaction of Enzymatic Hydrolysis Lignin: Biomass Pretreatment Severity Affects Lignin Valorization
journal, March 2018


Lignin depolymerisation strategies: towards valuable chemicals and fuels
journal, January 2014

  • Xu, Chunping; Arancon, Rick Arneil D.; Labidi, Jalel
  • Chemical Society Reviews, Vol. 43, Issue 22, p. 7485-7500
  • DOI: 10.1039/C4CS00235K

Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR
journal, May 2007

  • del Río, José C.; Gutiérrez, Ana; Rodríguez, Isabel M.
  • Journal of Analytical and Applied Pyrolysis, Vol. 79, Issue 1-2
  • DOI: 10.1016/j.jaap.2006.09.003

Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
journal, March 2012

  • Zhang, Fuzhong; Carothers, James M.; Keasling, Jay D.
  • Nature Biotechnology, Vol. 30, Issue 4
  • DOI: 10.1038/nbt.2149

One-pot ionic liquid pretreatment and saccharification of switchgrass
journal, January 2013

  • Shi, Jian; Gladden, John M.; Sathitsuksanoh, Noppadon
  • Green Chemistry, Vol. 15, Issue 9
  • DOI: 10.1039/c3gc40545a

Hydroxycinnamates in lignification
journal, August 2009


Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion
journal, August 2017

  • Rodriguez, Alberto; Salvachúa, Davinia; Katahira, Rui
  • ACS Sustainable Chemistry & Engineering, Vol. 5, Issue 9
  • DOI: 10.1021/acssuschemeng.7b01818

The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis : Re-annotation of the Pseudomonas putida KT2440 genome
journal, April 2016

  • Belda, Eugeni; van Heck, Ruben G. A.; José Lopez-Sanchez, Maria
  • Environmental Microbiology, Vol. 18, Issue 10
  • DOI: 10.1111/1462-2920.13230

Monolignol acylation and lignin structure in some nonwoody plants: A 2D NMR study
journal, November 2008


Transition metal (Ti, Mo, Nb, W) nitride catalysts for lignin depolymerisation
journal, January 2016

  • Chen, Long; Korányi, Tamás I.; Hensen, Emiel J. M.
  • Chemical Communications, Vol. 52, Issue 60
  • DOI: 10.1039/C6CC04702E

mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa
journal, June 2006


Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation
journal, June 2017

  • Sun, Jian; Shi, Jian; Murthy Konda, N. V. S. N.
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-017-0842-9

Quantitative release of fatty acids from lipids by a simple hydrolysis procedure.
journal, August 1983