skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks

Abstract

Unimolecular decomposition pathways are challenging to address in transition-metal catalysis and have previously not been suppressed via incorporation into a solid support. Two robust metal-organic frameworks (IRMOF-10 and bio-MOF-100) are used for the architectural stabilization of a structurally well-defined gold(III) catalyst. The inherent rigidity of these materials is utilized to preclude a unimolecular decomposition pathway—reductive elimination. Through this architectural stabilization strategy, decomposition of the incorporated gold(III) catalyst in the metal-organic frameworks is not observed; in contrast, the homogeneous analog is prone to decomposition in solution. Finally, stabilization of the catalyst in these metal-organic frameworks precludes leaching and enables recyclability, which is crucial for productive heterogeneous catalysis.

Authors:
 [1];  [2];  [2];  [1];  [3];  [1]
  1. Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Institutes of Health (NIH); National Science Foundation (NSF); MINECO; King Abdulaziz City for Science and Technology
OSTI Identifier:
1633252
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Chem
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2451-9294
Publisher:
Cell Press, Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lee, John S., Kapustin, Eugene A., Pei, Xiaokun, Llopis, Sebastián, Yaghi, Omar M., and Toste, F. Dean. Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. United States: N. p., 2019. Web. https://doi.org/10.1016/j.chempr.2019.10.022.
Lee, John S., Kapustin, Eugene A., Pei, Xiaokun, Llopis, Sebastián, Yaghi, Omar M., & Toste, F. Dean. Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. United States. https://doi.org/10.1016/j.chempr.2019.10.022
Lee, John S., Kapustin, Eugene A., Pei, Xiaokun, Llopis, Sebastián, Yaghi, Omar M., and Toste, F. Dean. Mon . "Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks". United States. https://doi.org/10.1016/j.chempr.2019.10.022. https://www.osti.gov/servlets/purl/1633252.
@article{osti_1633252,
title = {Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks},
author = {Lee, John S. and Kapustin, Eugene A. and Pei, Xiaokun and Llopis, Sebastián and Yaghi, Omar M. and Toste, F. Dean},
abstractNote = {Unimolecular decomposition pathways are challenging to address in transition-metal catalysis and have previously not been suppressed via incorporation into a solid support. Two robust metal-organic frameworks (IRMOF-10 and bio-MOF-100) are used for the architectural stabilization of a structurally well-defined gold(III) catalyst. The inherent rigidity of these materials is utilized to preclude a unimolecular decomposition pathway—reductive elimination. Through this architectural stabilization strategy, decomposition of the incorporated gold(III) catalyst in the metal-organic frameworks is not observed; in contrast, the homogeneous analog is prone to decomposition in solution. Finally, stabilization of the catalyst in these metal-organic frameworks precludes leaching and enables recyclability, which is crucial for productive heterogeneous catalysis.},
doi = {10.1016/j.chempr.2019.10.022},
journal = {Chem},
number = 1,
volume = 6,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mechanically-Induced Chemical Changes in Polymeric Materials
journal, November 2009

  • Caruso, Mary M.; Davis, Douglas A.; Shen, Qilong
  • Chemical Reviews, Vol. 109, Issue 11
  • DOI: 10.1021/cr9001353

Polymer mechanochemistry: techniques to generate molecular force via elongational flows
journal, January 2013

  • May, Preston A.; Moore, Jeffrey S.
  • Chemical Society Reviews, Vol. 42, Issue 18
  • DOI: 10.1039/c2cs35463b

Mechanochemistry:  The Mechanical Activation of Covalent Bonds
journal, August 2005

  • Beyer, Martin K.; Clausen-Schaumann, Hauke
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr030697h

Biasing reaction pathways with mechanical force
journal, March 2007

  • Hickenboth, Charles R.; Moore, Jeffrey S.; White, Scott R.
  • Nature, Vol. 446, Issue 7134
  • DOI: 10.1038/nature05681

Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene
journal, August 2017


Stress-Responsive Polymers Containing Cyclobutane Core Mechanophores: Reactivity and Mechanistic Insights
journal, August 2013

  • Kean, Zachary S.; Niu, Zhenbin; Hewage, Gihan B.
  • Journal of the American Chemical Society, Vol. 135, Issue 36
  • DOI: 10.1021/ja4075997

Proton-Coupled Mechanochemical Transduction: A Mechanogenerated Acid
journal, July 2012

  • Diesendruck, Charles E.; Steinberg, Brian D.; Sugai, Naoto
  • Journal of the American Chemical Society, Vol. 134, Issue 30
  • DOI: 10.1021/ja305645x

Activating catalysts with mechanical force
journal, April 2009

  • Piermattei, Alessio; Karthikeyan, S.; Sijbesma, Rint P.
  • Nature Chemistry, Vol. 1, Issue 2
  • DOI: 10.1038/nchem.167

Mechanocatalysis: forcing latent catalysts into action
journal, January 2013

  • Groote, Ramon; Jakobs, Robert T. M.; Sijbesma, Rint P.
  • Polymer Chemistry, Vol. 4, Issue 18
  • DOI: 10.1039/c3py00071k

Maleimide–thiol adducts stabilized through stretching
journal, February 2019


Equilibration of the Oxidative Addition Product of Tetrakis(triphenylphosphine)palladium and Electron-Rich Aryl Halides Leads to Product Scrambling in the Stille Reaction
journal, January 1995

  • Segelstein, B. E.; Butler, T. W.; Chenard, B. L.
  • The Journal of Organic Chemistry, Vol. 60, Issue 1
  • DOI: 10.1021/jo00106a006

Phosphonium Formation by Facile Carbon–Phosphorus Reductive Elimination from Gold(III)
journal, January 2016

  • Kawai, Hiroyuki; Wolf, William J.; DiPasquale, Antonio G.
  • Journal of the American Chemical Society, Vol. 138, Issue 2
  • DOI: 10.1021/jacs.5b10720

Migratory Insertion of Carbenes into Au(III)–C Bonds
journal, December 2017

  • Zhukhovitskiy, Aleksandr V.; Kobylianskii, Ilia J.; Wu, Chung-Yeh
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b11435

Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations
journal, February 2016

  • Zhang, Teng; Manna, Kuntal; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 138, Issue 9
  • DOI: 10.1021/jacs.6b00849

Plasmon-Enhanced Photocatalytic CO 2 Conversion within Metal–Organic Frameworks under Visible Light
journal, December 2016

  • Choi, Kyung Min; Kim, Dohyung; Rungtaweevoranit, Bunyarat
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b11027

Coordinative alignment of molecules in chiral metal-organic frameworks
journal, August 2016


Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure
journal, June 2017


Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal–Organic Frameworks
journal, March 2015

  • Yuan, Shuai; Lu, Weigang; Chen, Ying-Pin
  • Journal of the American Chemical Society, Vol. 137, Issue 9
  • DOI: 10.1021/ja512762r

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis
journal, September 2011

  • Yoon, Minyoung; Srirambalaji, Renganathan; Kim, Kimoon
  • Chemical Reviews, Vol. 112, Issue 2, p. 1196-1231
  • DOI: 10.1021/cr2003147

Metal–organic frameworks for artificial photosynthesis and photocatalysis
journal, January 2014


Enantioselective catalysis with homochiral metal–organic frameworks
journal, January 2009

  • Ma, Liqing; Abney, Carter; Lin, Wenbin
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1248-1256
  • DOI: 10.1039/b807083k

Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework
journal, January 2012

  • An, Jihyun; Farha, Omar K.; Hupp, Joseph T.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1618

Stable gold(III) catalysts by oxidative addition of a carbon–carbon bond
journal, January 2015

  • Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch
  • Nature, Vol. 517, Issue 7535
  • DOI: 10.1038/nature14104

Gold(I)-Catalyzed Enantioselective Ring Expansion of Allenylcyclopropanols
journal, June 2009

  • Kleinbeck, Florian; Toste, F. Dean
  • Journal of the American Chemical Society, Vol. 131, Issue 26
  • DOI: 10.1021/ja904055z

Gold for the Generation and Control of Fluxional Barbaralyl Cations
journal, November 2012

  • McGonigal, Paul R.; de León, Claudia; Wang, Yahui
  • Angewandte Chemie International Edition, Vol. 51, Issue 52
  • DOI: 10.1002/anie.201207682

Polymer-Bound Chiral Gold-Based Complexes as Efficient Heterogeneous Catalysts for Enantioselectivity Tunable Cycloaddition
journal, November 2015


Well-Defined Chiral Gold(III) Complex Catalyzed Direct Enantioconvergent Kinetic Resolution of 1,5-Enynes
journal, August 2017

  • Bohan, Patrick T.; Toste, F. Dean
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b06025