DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solution Blowing Synthesis of Li-Conductive Ceramic Nanofibers

Abstract

Solid state electrolytes (SSEs) offer great potential to enable high-performance and safe lithium (Li) batteries. However, the scale-up synthesis and processing of SSEs is a major challenge. In this work, three-dimensional networks of lithium lanthanum titanite (LLTO) nanofibers are produced through a scale-up technique based on solution blowing. Compared with the conventional electrospinning method, the solution blowing technique enables high-speed fabrication of SSEs (e.g., 15 times faster) with superior productivity and quality. Additionally, the room-temperature ionic conductivity of composite polymer electrolytes (CPEs) formed from solution-blown LLTO fibers is 70% higher than the ones formed from electrospun fibers (1.9 x 10-4 vs 1.1 x 10-4 S cm-1 for 10 wt % LLTO fibers). Furthermore, the cyclability of the CPEs made from solution-blown fibers in the symmetric Li cell is more than 2.5 times that of the CPEs made from electrospun fibers. These comparisons here show that solution-blown ion-conductive fibers hold great promise for applications in Li metal batteries.

Authors:
 [1];  [1];  [2];  [1];  [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Illinois, Chicago, IL (United States)
  2. Univ. of Illinois, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  3. Illinois Institute of Technology, Chicago, IL (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF)
OSTI Identifier:
1632868
Grant/Contract Number:  
AC02-06CH11357; CBET-1805938; DMR-0959470
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 12; Journal Issue: 14; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Li ion conductivity; Li metal batteries.; mass production; solid state nanofibers; solution blowing

Citation Formats

Huang, Zhennan, Kolbasov, Alexander, Yuan, Yifei, Cheng, Meng, Xu, Yunjie, Rojaee, Ramin, Deivanayagam, Ramasubramonian, Foroozan, Tara, Liu, Yuzi, Amine, Khalil, Lu, Jun, Yarin, Alexander L., and Shahbazian-Yassar, Reza. Solution Blowing Synthesis of Li-Conductive Ceramic Nanofibers. United States: N. p., 2020. Web. doi:10.1021/acsami.9b19851.
Huang, Zhennan, Kolbasov, Alexander, Yuan, Yifei, Cheng, Meng, Xu, Yunjie, Rojaee, Ramin, Deivanayagam, Ramasubramonian, Foroozan, Tara, Liu, Yuzi, Amine, Khalil, Lu, Jun, Yarin, Alexander L., & Shahbazian-Yassar, Reza. Solution Blowing Synthesis of Li-Conductive Ceramic Nanofibers. United States. https://doi.org/10.1021/acsami.9b19851
Huang, Zhennan, Kolbasov, Alexander, Yuan, Yifei, Cheng, Meng, Xu, Yunjie, Rojaee, Ramin, Deivanayagam, Ramasubramonian, Foroozan, Tara, Liu, Yuzi, Amine, Khalil, Lu, Jun, Yarin, Alexander L., and Shahbazian-Yassar, Reza. Wed . "Solution Blowing Synthesis of Li-Conductive Ceramic Nanofibers". United States. https://doi.org/10.1021/acsami.9b19851. https://www.osti.gov/servlets/purl/1632868.
@article{osti_1632868,
title = {Solution Blowing Synthesis of Li-Conductive Ceramic Nanofibers},
author = {Huang, Zhennan and Kolbasov, Alexander and Yuan, Yifei and Cheng, Meng and Xu, Yunjie and Rojaee, Ramin and Deivanayagam, Ramasubramonian and Foroozan, Tara and Liu, Yuzi and Amine, Khalil and Lu, Jun and Yarin, Alexander L. and Shahbazian-Yassar, Reza},
abstractNote = {Solid state electrolytes (SSEs) offer great potential to enable high-performance and safe lithium (Li) batteries. However, the scale-up synthesis and processing of SSEs is a major challenge. In this work, three-dimensional networks of lithium lanthanum titanite (LLTO) nanofibers are produced through a scale-up technique based on solution blowing. Compared with the conventional electrospinning method, the solution blowing technique enables high-speed fabrication of SSEs (e.g., 15 times faster) with superior productivity and quality. Additionally, the room-temperature ionic conductivity of composite polymer electrolytes (CPEs) formed from solution-blown LLTO fibers is 70% higher than the ones formed from electrospun fibers (1.9 x 10-4 vs 1.1 x 10-4 S cm-1 for 10 wt % LLTO fibers). Furthermore, the cyclability of the CPEs made from solution-blown fibers in the symmetric Li cell is more than 2.5 times that of the CPEs made from electrospun fibers. These comparisons here show that solution-blown ion-conductive fibers hold great promise for applications in Li metal batteries.},
doi = {10.1021/acsami.9b19851},
journal = {ACS Applied Materials and Interfaces},
number = 14,
volume = 12,
place = {United States},
year = {Wed Feb 26 00:00:00 EST 2020},
month = {Wed Feb 26 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers
journal, March 2015


Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries
journal, August 2018


Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes
journal, June 2018


Molecular Layer Deposition for Energy Conversion and Storage
journal, March 2018


Fabrication of Sub-Micrometer-Thick Solid Electrolyte Membranes of β-Li 3 PS 4 via Tiled Assembly of Nanoscale, Plate-Like Building Blocks
journal, May 2018

  • Hood, Zachary D.; Wang, Hui; Pandian, Amaresh Samuthira
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800014

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Super-Ionic Conduction in Solid-State Li 7 P 3 S 11 -Type Sulfide Electrolytes
journal, November 2018


A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S − P2S5 binary system
journal, December 2018


Recent progress in solid oxide and lithium ion conducting electrolytes research
journal, April 2006


High ionic conductivity in lithium lanthanum titanate
journal, June 1993

  • Inaguma, Yoshiyuki; Liquan, Chen; Itoh, Mitsuru
  • Solid State Communications, Vol. 86, Issue 10, p. 689-693
  • DOI: 10.1016/0038-1098(93)90841-a

Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

Halide-Stabilized LiBH 4 , a Room-Temperature Lithium Fast-Ion Conductor
journal, January 2009

  • Maekawa, Hideki; Matsuo, Motoaki; Takamura, Hitoshi
  • Journal of the American Chemical Society, Vol. 131, Issue 3
  • DOI: 10.1021/ja807392k

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


In situ formation of highly controllable and stable Na 3 PS 4 as a protective layer for Na metal anode
journal, January 2019

  • Zhao, Yang; Liang, Jianwen; Sun, Qian
  • Journal of Materials Chemistry A, Vol. 7, Issue 8
  • DOI: 10.1039/c8ta10174d

Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density
journal, January 2016


Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li 7 La 3 Zr 2 O 12
journal, September 2017


Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries
journal, March 2014


Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
journal, February 2018


Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte
journal, September 2011


Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration
journal, January 2013

  • Larraz, G.; Orera, A.; Sanjuán, M. L.
  • Journal of Materials Chemistry A, Vol. 1, Issue 37
  • DOI: 10.1039/c3ta11996c

Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+Al Ti2-(PO4)3 solid electrolytes
journal, September 2015


Growth of Lithium Lanthanum Titanate Nanosheets and Their Application in Lithium-Ion Batteries
journal, January 2016

  • Lin, Xi; Wang, Hongqiang; Du, Haiwei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 2
  • DOI: 10.1021/acsami.5b10877

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors
journal, February 2017


Plasma Enabled Synthesis and Processing of Materials for Lithium-Ion Batteries
journal, July 2018

  • Joseph, Jickson; Murdock, Adrian T.; Seo, Dong Han
  • Advanced Materials Technologies, Vol. 3, Issue 9
  • DOI: 10.1002/admt.201800070

Antiperovskite Li 3 OCl Superionic Conductor Films for Solid-State Li-Ion Batteries
journal, February 2016


All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts
journal, November 2010

  • Oudenhoven, Jos F. M.; Baggetto, Loïc.; Notten, Peter H. L.
  • Advanced Energy Materials, Vol. 1, Issue 1
  • DOI: 10.1002/aenm.201000002

Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
journal, April 2017


Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions
journal, August 2009

  • Medeiros, Eliton S.; Glenn, Gregory M.; Klamczynski, Artur P.
  • Journal of Applied Polymer Science, Vol. 113, Issue 4
  • DOI: 10.1002/app.30275

Solution Blowing of Soy Protein Fibers
journal, June 2011

  • Sinha-Ray, S.; Zhang, Y.; Yarin, A. L.
  • Biomacromolecules, Vol. 12, Issue 6
  • DOI: 10.1021/bm200438v

Industrial-Scale Solution Blowing of Soy Protein Nanofibers
journal, December 2015

  • Kolbasov, Alexander; Sinha-Ray, Suman; Joijode, Abhay
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 1
  • DOI: 10.1021/acs.iecr.5b04277

Solution Blow Spinning and Obtaining Submicrometric Fibers of Different Polymers
journal, December 2017

  • J. Gonzalez, Benito; J., Teno; D., Torres
  • International Journal of Nanoparticles and Nanotechnology, Vol. 3, Issue 1
  • DOI: 10.35840/2631-5084/5507

A Review of the Fundamental Principles and Applications of Solution Blow Spinning
journal, December 2016

  • Daristotle, John L.; Behrens, Adam M.; Sandler, Anthony D.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 51
  • DOI: 10.1021/acsami.6b12994

Preparation of Solution Blown Polyamic Acid Nanofibers and Their Imidization into Polyimide Nanofiber Mats
journal, November 2017

  • Li, Jing; Song, Guocheng; Yu, Junrong
  • Nanomaterials, Vol. 7, Issue 11
  • DOI: 10.3390/nano7110395

Shear and elongational rheology of gypsum slurries
text, January 2011


Domain boundary structures in lanthanum lithium titanates
journal, January 2014

  • Gao, Xiang; Fisher, Craig A. J.; Kimura, Teiichi
  • J. Mater. Chem. A, Vol. 2, Issue 3
  • DOI: 10.1039/c3ta13726k

Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
journal, March 2016

  • Ma, Cheng; Cheng, Yongqiang; Chen, Kai
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201600053

Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
journal, August 2017

  • Yuan, Yifei; Amine, Khalil; Lu, Jun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15806

Characterization of PVdF(HFP) Gel Electrolytes Based on 1-(2-Hydroxyethyl)-3-methyl Imidazolium Ionic Liquids
journal, September 2005

  • Yeon, Sun-Hwa; Kim, Ki-Sub; Choi, Sukjeong
  • The Journal of Physical Chemistry B, Vol. 109, Issue 38
  • DOI: 10.1021/jp053237w

Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field
journal, January 2006

  • Reznik, S. N.; Yarin, A. L.; Zussman, E.
  • Physics of Fluids, Vol. 18, Issue 6
  • DOI: 10.1063/1.2206747

Works referencing / citing this record:

Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review
journal, August 2020

  • Reddy, Mogalahalli V.; Julien, Christian M.; Mauger, Alain
  • Nanomaterials, Vol. 10, Issue 8
  • DOI: 10.3390/nano10081606