skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoelectron Diffraction Imaging of a Molecular Breakup Using an X-Ray Free-Electron Laser

Abstract

© 2020 authors. Published by the American Physical Society. A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction - where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within - can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Chemical Sciences, Geosciences & Biosciences Division (SC-22.1)
OSTI Identifier:
1632735
Alternate Identifier(s):
OSTI ID: 1637899; OSTI ID: 1670122
Grant/Contract Number:  
AC02-05CH11231; SC0019451; AC02-76SF00515; 05K13RF4; 05K16RF1; DE 2366/1-2; NSF-PHY-1807017
Resource Type:
Published Article
Journal Name:
Physical Review. X
Additional Journal Information:
Journal Name: Physical Review. X Journal Volume: 10 Journal Issue: 2; Journal ID: ISSN 2160-3308
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Kastirke, Gregor, Schöffler, Markus S., Weller, Miriam, Rist, Jonas, Boll, Rebecca, Anders, Nils, Baumann, Thomas M., Eckart, Sebastian, Erk, Benjamin, De Fanis, Alberto, Fehre, Kilian, Gatton, Averell, Grundmann, Sven, Grychtol, Patrik, Hartung, Alexander, Hofmann, Max, Ilchen, Markus, Janke, Christian, Kircher, Max, Kunitski, Maksim, Li, Xiang, Mazza, Tommaso, Melzer, Niklas, Montano, Jacobo, Music, Valerija, Nalin, Giammarco, Ovcharenko, Yevheniy, Pier, Andreas, Rennhack, Nils, Rivas, Daniel E., Dörner, Reinhard, Rolles, Daniel, Rudenko, Artem, Schmidt, Philipp, Siebert, Juliane, Strenger, Nico, Trabert, Daniel, Vela-Perez, Isabel, Wagner, Rene, Weber, Thorsten, Williams, Joshua B., Ziolkowski, Pawel, Schmidt, Lothar Ph. H., Czasch, Achim, Trinter, Florian, Meyer, Michael, Ueda, Kiyoshi, Demekhin, Philipp V., and Jahnke, Till. Photoelectron Diffraction Imaging of a Molecular Breakup Using an X-Ray Free-Electron Laser. United States: N. p., 2020. Web. doi:10.1103/PhysRevX.10.021052.
Kastirke, Gregor, Schöffler, Markus S., Weller, Miriam, Rist, Jonas, Boll, Rebecca, Anders, Nils, Baumann, Thomas M., Eckart, Sebastian, Erk, Benjamin, De Fanis, Alberto, Fehre, Kilian, Gatton, Averell, Grundmann, Sven, Grychtol, Patrik, Hartung, Alexander, Hofmann, Max, Ilchen, Markus, Janke, Christian, Kircher, Max, Kunitski, Maksim, Li, Xiang, Mazza, Tommaso, Melzer, Niklas, Montano, Jacobo, Music, Valerija, Nalin, Giammarco, Ovcharenko, Yevheniy, Pier, Andreas, Rennhack, Nils, Rivas, Daniel E., Dörner, Reinhard, Rolles, Daniel, Rudenko, Artem, Schmidt, Philipp, Siebert, Juliane, Strenger, Nico, Trabert, Daniel, Vela-Perez, Isabel, Wagner, Rene, Weber, Thorsten, Williams, Joshua B., Ziolkowski, Pawel, Schmidt, Lothar Ph. H., Czasch, Achim, Trinter, Florian, Meyer, Michael, Ueda, Kiyoshi, Demekhin, Philipp V., & Jahnke, Till. Photoelectron Diffraction Imaging of a Molecular Breakup Using an X-Ray Free-Electron Laser. United States. doi:https://doi.org/10.1103/PhysRevX.10.021052
Kastirke, Gregor, Schöffler, Markus S., Weller, Miriam, Rist, Jonas, Boll, Rebecca, Anders, Nils, Baumann, Thomas M., Eckart, Sebastian, Erk, Benjamin, De Fanis, Alberto, Fehre, Kilian, Gatton, Averell, Grundmann, Sven, Grychtol, Patrik, Hartung, Alexander, Hofmann, Max, Ilchen, Markus, Janke, Christian, Kircher, Max, Kunitski, Maksim, Li, Xiang, Mazza, Tommaso, Melzer, Niklas, Montano, Jacobo, Music, Valerija, Nalin, Giammarco, Ovcharenko, Yevheniy, Pier, Andreas, Rennhack, Nils, Rivas, Daniel E., Dörner, Reinhard, Rolles, Daniel, Rudenko, Artem, Schmidt, Philipp, Siebert, Juliane, Strenger, Nico, Trabert, Daniel, Vela-Perez, Isabel, Wagner, Rene, Weber, Thorsten, Williams, Joshua B., Ziolkowski, Pawel, Schmidt, Lothar Ph. H., Czasch, Achim, Trinter, Florian, Meyer, Michael, Ueda, Kiyoshi, Demekhin, Philipp V., and Jahnke, Till. Mon . "Photoelectron Diffraction Imaging of a Molecular Breakup Using an X-Ray Free-Electron Laser". United States. doi:https://doi.org/10.1103/PhysRevX.10.021052.
@article{osti_1632735,
title = {Photoelectron Diffraction Imaging of a Molecular Breakup Using an X-Ray Free-Electron Laser},
author = {Kastirke, Gregor and Schöffler, Markus S. and Weller, Miriam and Rist, Jonas and Boll, Rebecca and Anders, Nils and Baumann, Thomas M. and Eckart, Sebastian and Erk, Benjamin and De Fanis, Alberto and Fehre, Kilian and Gatton, Averell and Grundmann, Sven and Grychtol, Patrik and Hartung, Alexander and Hofmann, Max and Ilchen, Markus and Janke, Christian and Kircher, Max and Kunitski, Maksim and Li, Xiang and Mazza, Tommaso and Melzer, Niklas and Montano, Jacobo and Music, Valerija and Nalin, Giammarco and Ovcharenko, Yevheniy and Pier, Andreas and Rennhack, Nils and Rivas, Daniel E. and Dörner, Reinhard and Rolles, Daniel and Rudenko, Artem and Schmidt, Philipp and Siebert, Juliane and Strenger, Nico and Trabert, Daniel and Vela-Perez, Isabel and Wagner, Rene and Weber, Thorsten and Williams, Joshua B. and Ziolkowski, Pawel and Schmidt, Lothar Ph. H. and Czasch, Achim and Trinter, Florian and Meyer, Michael and Ueda, Kiyoshi and Demekhin, Philipp V. and Jahnke, Till},
abstractNote = {© 2020 authors. Published by the American Physical Society. A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction - where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within - can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.},
doi = {10.1103/PhysRevX.10.021052},
journal = {Physical Review. X},
number = 2,
volume = 10,
place = {United States},
year = {2020},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.1103/PhysRevX.10.021052

Figures / Tables:

FIG. 1 FIG. 1: Scheme of photoelectron diffraction imaging during Coulomb explosion of O2. (a) A K-shell electron is ionized upon irradiation with XFEL light. (b) After the innershell vacancy has been filled after a first Auger decay, the molecule is doubly charged and fragments in a Coulomb explosion. (c) During themore » fragmentation a second photon triggers the emission of another K-shell electron illuminating the molecule from within. (d) A further, subsequent Auger decay yields the observed final O+/O3+ state in which the Coulomb explosion continues until the ions are well separated and finally detected. Steps (a) to (c) occur during a single XFEL light pulse, i.e., within approximately 25 fs.« less

Save / Share:

Works referenced in this record:

Photoelectron diffraction: from phenomenological demonstration to practical tool
journal, May 2008


Direct Determination of Absolute Molecular Stereochemistry in Gas Phase by Coulomb Explosion Imaging
journal, September 2013


Multicoincidence studies of photo and Auger electrons from fixed-in-space molecules using the COLTRIMS technique
journal, December 2004

  • Jahnke, T.; Weber, Th.; Osipov, T.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 141, Issue 2-3
  • DOI: 10.1016/j.elspec.2004.06.010

Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene
journal, October 2016


Single center method: A computational tool for ionization and electronic excitation studies of molecules
journal, January 2011

  • Demekhin, Ph. V.; Ehresmann, A.; Sukhorukov, V. L.
  • The Journal of Chemical Physics, Vol. 134, Issue 2
  • DOI: 10.1063/1.3526026

The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction
journal, April 2019


Complete photo-fragmentation of the deuterium molecule
journal, September 2004


Femtosecond photoelectron diffraction on laser-aligned molecules: Towards time-resolved imaging of molecular structure
journal, December 2013


Photon Beam Transport and Scientific Instruments at the European XFEL
journal, June 2017

  • Tschentscher, Thomas; Bressler, Christian; Grünert, Jan
  • Applied Sciences, Vol. 7, Issue 6
  • DOI: 10.3390/app7060592

Colloquium : Aligning molecules with strong laser pulses
journal, April 2003


Disentangling Auger decays in O2 by photoelectron-ion coincidences
journal, June 2017


Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules
journal, January 2014

  • Boll, Rebecca; Rouzée, Arnaud; Adolph, Marcus
  • Faraday Discuss., Vol. 171
  • DOI: 10.1039/C4FD00037D

Femtochemistry. Past, present, and future
journal, January 2000


Photoelectron diffraction from single oriented molecules: Towards ultrafast structure determination of molecules using x-ray free-electron lasers
journal, June 2013


Femtosecond x-ray photoelectron diffraction on gas-phase dibromobenzene molecules
journal, June 2014


Detailed theoretical and experimental description of normal Auger decay in O 2
journal, June 2008

  • Bao, Zhuo; Fink, Reinhold F.; Travnikova, Oksana
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 41, Issue 12
  • DOI: 10.1088/0953-4075/41/12/125101

Time-resolved Coulomb explosion imaging: A method to measure structure and dynamics of molecular nuclear wave packets
journal, July 1998

  • Stapelfeldt, Henrik; Constant, Eric; Sakai, Hirofumi
  • Physical Review A, Vol. 58, Issue 1
  • DOI: 10.1103/PhysRevA.58.426

Recoil-ion and electron momentum spectroscopy: reaction-microscopes
journal, August 2003


Investigation of photoionization and photodissociation of an oxygen molecule by the method of coupled differential equations
journal, March 2007

  • Demekhin, Ph. V.; Omel’yanenko, D. V.; Lagutin, B. M.
  • Optics and Spectroscopy, Vol. 102, Issue 3
  • DOI: 10.1134/S0030400X07030022

Potential for biomolecular imaging with femtosecond X-ray pulses
journal, August 2000

  • Neutze, Richard; Wouts, Remco; van der Spoel, David
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021099

Photoelectron Diffraction Mapping: Molecules Illuminated from Within
journal, June 2001


Probing molecular bond-length using molecular-frame photoelectron angular distributions
journal, May 2019

  • Fukuzawa, Hironobu; Lucchese, Robert R.; Liu, Xiao-Jing
  • The Journal of Chemical Physics, Vol. 150, Issue 17
  • DOI: 10.1063/1.5091946

Imaging Polyatomic Molecules in Three Dimensions Using Molecular Frame Photoelectron Angular Distributions
journal, June 2012


Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters
journal, January 2015

  • Galitskiy, S. A.; Artemyev, A. N.; Jänkälä, K.
  • The Journal of Chemical Physics, Vol. 142, Issue 3
  • DOI: 10.1063/1.4905722

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.