DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Skyrmion fluctuations at a first-order phase transition boundary

Abstract

Magnetic skyrmions are topologically protected spin textures with promising prospects for applications in data storage. They can form a lattice state due to competing magnetic interactions and are commonly found in a small region of the temperature—magnetic field phase diagram. Recent work has demonstrated that these magnetic quasi-particles fluctuate at the μeV energy scale. Here, we use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role. Surprisingly, we find that the relaxation of the intermediate scattering function at this transition differs significantly compared to that deep in the skyrmion lattice phase. The observation of a compressed exponential behavior suggests solid-like dynamics, often associated with jamming. We assign this behavior to disorder and the phase coexistence observed in a narrow field-window near the transition, which can cause fluctuations that lead to glassy behavior.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [2]; ORCiD logo [5];  [6];  [1];  [2]; ORCiD logo [2];  [2]; ORCiD logo [2];  [7];  [2]; ORCiD logo [2];  [2];  [8];  [2];  [2] more »;  [2];  [9];  [10]; ORCiD logo [6];  [11];  [2]; ORCiD logo [1] « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  3. Naval Information Warfare Center Pacific, San Diego, CA (United States)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Univ. of California, San Diego, CA (United States). Dept. of Physics
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  6. Univ. of Oregon, Eugene, OR (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Santa Cruz, CA (United States)
  9. Univ. of California, San Diego, CA (United States). Dept. of Physics
  10. Univ. of California, San Diego, CA (United States)
  11. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
OSTI Identifier:
1632651
Alternate Identifier(s):
OSTI ID: 1617087; OSTI ID: 1775384
Grant/Contract Number:  
AC02-76SF00515; AC02-05-CH11231; SC0003678
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 116; Journal Issue: 18; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Free electron lasers; Monochromators; X-rays; Magnetic materials; Thin films; Data storage and retrieval; Optical metrology; Phase transitions; Hypothetical particles; Magnetic fields

Citation Formats

Esposito, V., Zheng, X. Y., Seaberg, M. H., Montoya, S. A., Holladay, B., Reid, A. H., Streubel, R., Lee, J. C. T., Shen, L., Koralek, J. D., Coslovich, G., Walter, P., Zohar, S., Thampy, V., Lin, M. F., Hart, P., Nakahara, K., Fischer, P., Colocho, W., Lutman, A., Decker, F. -J., Sinha, S. K., Fullerton, E. E., Kevan, S. D., Roy, S., Dunne, M., and Turner, J. J. Skyrmion fluctuations at a first-order phase transition boundary. United States: N. p., 2020. Web. doi:10.1063/5.0004879.
Esposito, V., Zheng, X. Y., Seaberg, M. H., Montoya, S. A., Holladay, B., Reid, A. H., Streubel, R., Lee, J. C. T., Shen, L., Koralek, J. D., Coslovich, G., Walter, P., Zohar, S., Thampy, V., Lin, M. F., Hart, P., Nakahara, K., Fischer, P., Colocho, W., Lutman, A., Decker, F. -J., Sinha, S. K., Fullerton, E. E., Kevan, S. D., Roy, S., Dunne, M., & Turner, J. J. Skyrmion fluctuations at a first-order phase transition boundary. United States. https://doi.org/10.1063/5.0004879
Esposito, V., Zheng, X. Y., Seaberg, M. H., Montoya, S. A., Holladay, B., Reid, A. H., Streubel, R., Lee, J. C. T., Shen, L., Koralek, J. D., Coslovich, G., Walter, P., Zohar, S., Thampy, V., Lin, M. F., Hart, P., Nakahara, K., Fischer, P., Colocho, W., Lutman, A., Decker, F. -J., Sinha, S. K., Fullerton, E. E., Kevan, S. D., Roy, S., Dunne, M., and Turner, J. J. Mon . "Skyrmion fluctuations at a first-order phase transition boundary". United States. https://doi.org/10.1063/5.0004879. https://www.osti.gov/servlets/purl/1632651.
@article{osti_1632651,
title = {Skyrmion fluctuations at a first-order phase transition boundary},
author = {Esposito, V. and Zheng, X. Y. and Seaberg, M. H. and Montoya, S. A. and Holladay, B. and Reid, A. H. and Streubel, R. and Lee, J. C. T. and Shen, L. and Koralek, J. D. and Coslovich, G. and Walter, P. and Zohar, S. and Thampy, V. and Lin, M. F. and Hart, P. and Nakahara, K. and Fischer, P. and Colocho, W. and Lutman, A. and Decker, F. -J. and Sinha, S. K. and Fullerton, E. E. and Kevan, S. D. and Roy, S. and Dunne, M. and Turner, J. J.},
abstractNote = {Magnetic skyrmions are topologically protected spin textures with promising prospects for applications in data storage. They can form a lattice state due to competing magnetic interactions and are commonly found in a small region of the temperature—magnetic field phase diagram. Recent work has demonstrated that these magnetic quasi-particles fluctuate at the μeV energy scale. Here, we use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role. Surprisingly, we find that the relaxation of the intermediate scattering function at this transition differs significantly compared to that deep in the skyrmion lattice phase. The observation of a compressed exponential behavior suggests solid-like dynamics, often associated with jamming. We assign this behavior to disorder and the phase coexistence observed in a narrow field-window near the transition, which can cause fluctuations that lead to glassy behavior.},
doi = {10.1063/5.0004879},
journal = {Applied Physics Letters},
number = 18,
volume = 116,
place = {United States},
year = {Mon May 04 00:00:00 EDT 2020},
month = {Mon May 04 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Fe–Gd thin film heterostructure room temperature phases. (a) Sketch of the phase diagram at room temperature with a magnetic field. The critical fields are H* = 180 mT, Hsk = 205mT, and Hfm ≈ 265 mT. The experiment reported here was performed at H = 195mT, well inmore » the mixed phase region, where both the skyrmion lattice and the stripes coexist. (b) Sketch of the stripe, mixed, and skyrmion lattice phases in real space, based on simulations from previous work. (c) Measured data of the soft x-ray FEL diffraction patterns at the Gd M5-edge showing the stripe, mixed, and skyrmion lattice phases in reciprocal space. Because each image is the sum of about 500 shots, the speckle is not visible in these average images.« less

Save / Share:

Works referenced in this record:

Critical scaling in the cubic helimagnet Cu 2 OSeO 3
journal, February 2014


Jamming phase diagram for attractive particles
journal, June 2001

  • Trappe, V.; Prasad, V.; Cipelletti, Luca
  • Nature, Vol. 411, Issue 6839
  • DOI: 10.1038/35081021

Linac Coherent Light Source: The first five years
journal, March 2016


The microscopic role of deformation in the dynamics of soft colloids
journal, April 2019


First-Order Phase Transitions in Superconductors and Smectic- A Liquid Crystals
journal, February 1974


Experimental test of a fluctuation-induced first-order phase transition: The nematic–smectic- A transition
journal, June 1990


Specific Heat of the Skyrmion Lattice Phase and Field-Induced Tricritical Point in MnSi
journal, April 2013


Skyrmion Lattice in a Chiral Magnet
journal, February 2009


Observation of room-temperature polar skyrmions
journal, April 2019


First-order transition from antiferromagnetism to ferromagnetism in C e ( F e 0.96 Al 0.04 ) 2
journal, August 2001


Quantum skyrmions in two-dimensional chiral magnets
journal, October 2016


Reconfigurable ferromagnetic liquid droplets
journal, July 2019


Skyrmion flow near room temperature in an ultralow current density
journal, January 2012

  • Yu, X. Z.; Kanazawa, N.; Zhang, W. Z.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1990

Multiple phases with a tricritical point and a Lifshitz point in the skyrmion host Cu 2 OSeO 3
journal, October 2019

  • Chauhan, Harish Chandr; Kumar, Birendra; Tiwari, Jeetendra Kumar
  • Physical Review B, Vol. 100, Issue 16
  • DOI: 10.1103/PhysRevB.100.165143

Spontaneous skyrmion ground states in magnetic metals
journal, August 2006

  • Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C.
  • Nature, Vol. 442, Issue 7104, p. 797-801
  • DOI: 10.1038/nature05056

Critical phenomenon of the near room temperature skyrmion material FeGe
journal, February 2016

  • Zhang, Lei; Han, Hui; Ge, Min
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep22397

Universal non-diffusive slow dynamics in aging soft matter
journal, September 2002

  • Cipelletti, Luca; Ramos, Laurence; Manley, S.
  • Faraday Discussions, Vol. 123
  • DOI: 10.1039/b204495a

Direct measurement of antiferromagnetic domain fluctuations
journal, May 2007

  • Shpyrko, O. G.; Isaacs, E. D.; Logan, J. M.
  • Nature, Vol. 447, Issue 7140
  • DOI: 10.1038/nature05776

Compressed exponential decays in correlation experiments: The influence of temperature gradients and convection
journal, March 2015

  • Gabriel, Jan; Blochowicz, Thomas; Stühn, Bernd
  • The Journal of Chemical Physics, Vol. 142, Issue 10
  • DOI: 10.1063/1.4914092

Mean-field theory of hard sphere glasses and jamming
journal, March 2010


Liquid dynamics and inelastic scattering of neutrons
journal, January 1959


Crossover from Stretched to Compressed Exponential Relaxations in a Polymer-Based Sponge Phase
journal, August 2006


Fluctuation induced first order phase transition in thin films of type I superconductors
journal, March 2001


Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet
journal, September 2018

  • Karube, Kosuke; White, Jonathan S.; Morikawa, Daisuke
  • Science Advances, Vol. 4, Issue 9
  • DOI: 10.1126/sciadv.aar7043

Fluctuation-induced first-order phase transitions in type-1.5 superconductors in zero external field
journal, March 2015


A unified field theory of mesons and baryons
journal, March 1962


Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy
journal, May 2010


Revealing the fast atomic motion of network glasses
journal, May 2014

  • Ruta, B.; Baldi, G.; Chushkin, Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4939

Stretched exponential relaxation in molecular and electronic glasses
journal, September 1996


Magnetic scattering of x rays (invited)
journal, April 1985


Synthesizing skyrmion bound pairs in Fe-Gd thin films
journal, July 2016

  • Lee, J. C. T.; Chess, J. J.; Montoya, S. A.
  • Applied Physics Letters, Vol. 109, Issue 2
  • DOI: 10.1063/1.4955462

Resonant properties of dipole skyrmions in amorphous Fe/Gd multilayers
journal, June 2017


Measuring temporal speckle correlations at ultrafast x-ray sources
journal, December 2008


Collective dynamical skyrmion excitations in a magnonic crystal
journal, May 2016


Biskyrmion states and their current-driven motion in a layered manganite
journal, January 2014

  • Yu, X. Z.; Tokunaga, Y.; Kaneko, Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4198

Spin jam induced by quantum fluctuations in a frustrated magnet
journal, August 2015

  • Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 37
  • DOI: 10.1073/pnas.1503126112

The renormalization group and the ε expansion
journal, August 1974


Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets
journal, April 2013


Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices
journal, January 2017


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.