skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction

Abstract

The poor activity and stability of electrode materials for the oxygen evolution reaction are the main bottlenecks in the water-splitting reaction for H2 production. In this work, by studying the activity–stability trends for the oxygen evolution reaction on conductive M1OxHy, Fe–M1OxHy and Fe–M1M2OxHy hydr(oxy)oxide clusters (M1 = Ni, Co, Fe; M2 = Mn, Co, Cu), we show that balancing the rates of Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites. Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface. We suggest that the Fe–M adsorption energy can therefore serve as a reaction descriptor that unifies oxygen evolution reaction catalysis on 3d transition-metal hydr(oxy)oxides in alkaline media. Thus, the introduction of dynamically stable active sites extends the design rules for creating active and stable interfaces.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1];  [1];  [3];  [1];  [1];  [4]; ORCiD logo [4];  [1]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Valparaiso Univ., IN (United States)
  3. Univ. of Belgrade (Serbia)
  4. Argonne National Lab. (ANL), Lemont, IL (United States). Advanced Photon Source (APS)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and Center for Nanoscale Materials (CNM)
Sponsoring Org.:
Japan Society for the Promotion of Science (JSPS); USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
OSTI Identifier:
1632277
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 5; Journal Issue: 3; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Electrocatalysis; Hydrogen fuel; Solar fuels

Citation Formats

Chung, Dong Young, Lopes, Pietro P., Farinazzo Bergamo Dias Martins, Pedro, He, Haiying, Kawaguchi, Tomoya, Zapol, Peter, You, Hoydoo, Tripkovic, Dusan, Strmcnik, Dusan, Zhu, Yisi, Seifert, Soenke, Lee, Sungsik, Stamenkovic, Vojislav R., and Markovic, Nenad M. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. United States: N. p., 2020. Web. doi:10.1038/s41560-020-0576-y.
Chung, Dong Young, Lopes, Pietro P., Farinazzo Bergamo Dias Martins, Pedro, He, Haiying, Kawaguchi, Tomoya, Zapol, Peter, You, Hoydoo, Tripkovic, Dusan, Strmcnik, Dusan, Zhu, Yisi, Seifert, Soenke, Lee, Sungsik, Stamenkovic, Vojislav R., & Markovic, Nenad M. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. United States. doi:https://doi.org/10.1038/s41560-020-0576-y
Chung, Dong Young, Lopes, Pietro P., Farinazzo Bergamo Dias Martins, Pedro, He, Haiying, Kawaguchi, Tomoya, Zapol, Peter, You, Hoydoo, Tripkovic, Dusan, Strmcnik, Dusan, Zhu, Yisi, Seifert, Soenke, Lee, Sungsik, Stamenkovic, Vojislav R., and Markovic, Nenad M. Mon . "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction". United States. doi:https://doi.org/10.1038/s41560-020-0576-y. https://www.osti.gov/servlets/purl/1632277.
@article{osti_1632277,
title = {Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction},
author = {Chung, Dong Young and Lopes, Pietro P. and Farinazzo Bergamo Dias Martins, Pedro and He, Haiying and Kawaguchi, Tomoya and Zapol, Peter and You, Hoydoo and Tripkovic, Dusan and Strmcnik, Dusan and Zhu, Yisi and Seifert, Soenke and Lee, Sungsik and Stamenkovic, Vojislav R. and Markovic, Nenad M.},
abstractNote = {The poor activity and stability of electrode materials for the oxygen evolution reaction are the main bottlenecks in the water-splitting reaction for H2 production. In this work, by studying the activity–stability trends for the oxygen evolution reaction on conductive M1OxHy, Fe–M1OxHy and Fe–M1M2OxHy hydr(oxy)oxide clusters (M1 = Ni, Co, Fe; M2 = Mn, Co, Cu), we show that balancing the rates of Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites. Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface. We suggest that the Fe–M adsorption energy can therefore serve as a reaction descriptor that unifies oxygen evolution reaction catalysis on 3d transition-metal hydr(oxy)oxides in alkaline media. Thus, the introduction of dynamically stable active sites extends the design rules for creating active and stable interfaces.},
doi = {10.1038/s41560-020-0576-y},
journal = {Nature Energy},
number = 3,
volume = 5,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe 4+ by Mössbauer Spectroscopy
journal, November 2015

  • Chen, Jamie Y. C.; Dang, Lianna; Liang, Hanfeng
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b10699

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


Origin of Anomalous Activities for Electrocatalysts in Alkaline Electrolytes
journal, October 2012

  • Subbaraman, Ram; Danilovic, N.; Lopes, P. P.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 42
  • DOI: 10.1021/jp3075783

Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media
journal, August 2015

  • Burke, Michaela S.; Zou, Shihui; Enman, Lisa J.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 18
  • DOI: 10.1021/acs.jpclett.5b01650

An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction
journal, February 2019


Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts
journal, November 2017


Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments
journal, October 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee Chul
  • Angewandte Chemie International Edition, Vol. 53, Issue 51
  • DOI: 10.1002/anie.201406455

Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts
journal, July 2015

  • Binninger, Tobias; Mohamed, Rhiyaad; Waltar, Kay
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12167

Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst
journal, February 2014

  • Zhang, Miao; de Respinis, Moreno; Frei, Heinz
  • Nature Chemistry, Vol. 6, Issue 4
  • DOI: 10.1038/nchem.1874

A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid
journal, April 2014

  • Huynh, Michael; Bediako, D. Kwabena; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 136, Issue 16
  • DOI: 10.1021/ja413147e

The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum
journal, August 2009

  • Strmcnik, D.; Kodama, K.; van der Vliet, D.
  • Nature Chemistry, Vol. 1, Issue 6
  • DOI: 10.1038/nchem.330

Osmium nanoislands spontaneously deposited on a Pt(111) electrode: an XPS, STM and GIF-XAS study
journal, September 2003


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction
journal, May 2018

  • Xiao, Hai; Shin, Hyeyoung; Goddard, William A.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
  • DOI: 10.1073/pnas.1722034115

Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution
journal, November 2015


Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction
journal, August 2015

  • Diaz-Morales, Oscar; Ledezma-Yanez, Isis; Koper, Marc T. M.
  • ACS Catalysis, Vol. 5, Issue 9
  • DOI: 10.1021/acscatal.5b01638

Implicit self-consistent electrolyte model in plane-wave density-functional theory
journal, December 2019

  • Mathew, Kiran; Kolluru, V. S. Chaitanya; Mula, Srinidhi
  • The Journal of Chemical Physics, Vol. 151, Issue 23
  • DOI: 10.1063/1.5132354

Parameter-free calculations of X-ray spectra with FEFF9
journal, January 2010

  • Rehr, John J.; Kas, Joshua J.; Vila, Fernando D.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 21
  • DOI: 10.1039/b926434e

A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction
journal, September 2016


Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts
journal, March 2016

  • Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11053

Energy and fuels from electrochemical interfaces
journal, December 2016

  • Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4738

Reaction chemistry in rechargeable Li–O 2 batteries
journal, January 2017

  • Lim, Hee-Dae; Lee, Byungju; Bae, Youngjoon
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00929H

Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
journal, July 2017

  • Fabbri, Emiliana; Nachtegaal, Maarten; Binninger, Tobias
  • Nature Materials, Vol. 16, Issue 9
  • DOI: 10.1038/nmat4938

A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts
journal, June 2017

  • Yang, Chunzhen; Fontaine, Olivier; Tarascon, Jean-Marie
  • Angewandte Chemie, Vol. 129, Issue 30
  • DOI: 10.1002/ange.201701984

The stability number as a metric for electrocatalyst stability benchmarking
journal, June 2018


Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion
journal, May 2017


Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
journal, February 2014

  • Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra
  • The Journal of Chemical Physics, Vol. 140, Issue 8
  • DOI: 10.1063/1.4865107

Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts
journal, March 2019


Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts
journal, May 2012

  • Subbaraman, Ram; Tripkovic, Dusan; Chang, Kee-Chul
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3313

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Electrolysis of water on oxide surfaces
journal, September 2007


Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces
journal, December 2011


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments
journal, March 2016


Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations
journal, July 2019

  • Garcia, Amanda C.; Touzalin, Thomas; Nieuwland, Celine
  • Angewandte Chemie International Edition, Vol. 58, Issue 37
  • DOI: 10.1002/anie.201905501

The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes
journal, January 1987

  • Corrigan, Dennis A.
  • Journal of The Electrochemical Society, Vol. 134, Issue 2
  • DOI: 10.1149/1.2100463

A Self-Healing Oxygen-Evolving Catalyst
journal, March 2009

  • Lutterman, Daniel A.; Surendranath, Yogesh; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 131, Issue 11
  • DOI: 10.1021/ja900023k

Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution
journal, June 2014

  • Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5191

NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes
journal, July 2016


Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Homogeneously dispersed multimetal oxygen-evolving catalysts
journal, March 2016


Activity Descriptors for CO 2 Electroreduction to Methane on Transition-Metal Catalysts
journal, January 2012

  • Peterson, Andrew A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 2
  • DOI: 10.1021/jz201461p

Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles
journal, October 2015


Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts
journal, April 2016

  • Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b00332

Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
journal, January 2015

  • Friebel, Daniel; Louie, Mary W.; Bajdich, Michal
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja511559d

Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity
journal, August 2017

  • Stevens, Michaela Burke; Trang, Christina D. M.; Enman, Lisa J.
  • Journal of the American Chemical Society, Vol. 139, Issue 33
  • DOI: 10.1021/jacs.7b07117

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014

  • Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja502379c

Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy
journal, November 2018


Improved grid-based algorithm for Bader charge allocation
journal, January 2007

  • Sanville, Edward; Kenny, Steven D.; Smith, Roger
  • Journal of Computational Chemistry, Vol. 28, Issue 5
  • DOI: 10.1002/jcc.20575

Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses
journal, October 2014

  • Frydendal, Rasmus; Paoli, Elisa A.; Knudsen, Brian P.
  • ChemElectroChem, Vol. 1, Issue 12
  • DOI: 10.1002/celc.201402262

Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry
journal, March 2017

  • Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 12
  • DOI: 10.1073/pnas.1702081114

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

Oxygen Evolution Reaction—The Enigma in Water Electrolysis
journal, September 2018


Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction
journal, January 2018

  • Kim, Ju Seong; Kim, Byunghoon; Kim, Hyunah
  • Advanced Energy Materials, Vol. 8, Issue 11
  • DOI: 10.1002/aenm.201702774

Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films
journal, January 2017

  • Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 7
  • DOI: 10.1073/pnas.1620787114