skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of High Efficient Mid-Wavelength Infrared Polarizer on ORMOCHALC Polymer

Abstract

While an organically modified chalcogenide (ORMOCHALC) can be used to fabricate a polymeric mid-wavelength infrared (MWIR) polarizer with competitive extinction ratio compared to the commercial wire-grid polarizers, which are composed of fragile inorganic materials, there is still a knowledge gap regarding the systematic design process to obtain high transmission efficiency and extinction ratio. As such, a computational parameter study for design optimization is conducted with the geometric parameters of the bilayer grating ORMOCHALC polarizer. The computational study shows that the Fabry–Pérot cavity is the primary mechanism that determines the transmission behaviors and the extinction ratio. A bilayer grating design, guided by the parameter study, is realized through the thermal nanoimprint and metal deposition processes. The extinction ratios measured with the Fourier-transform infrared are 245, 304, and 351 at the wavelength of 3, 4, and 5 μm, respectively. Compared to the state-of-the-art of the polymeric MWIR linear polarizers, the extinction ratio is improved by 1.4 times, and the transmission efficiency is increased by 2.5 times. Theoretical analysis with the multiple-layer model based on the transfer matrix method predicts a matched transmission behavior with the experiment and a full-wave electromagnetic simulation.

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [4];  [4];  [4];  [4];  [4];  [6];  [3];  [1]; ORCiD logo [1]
  1. North Carolina State Univ., Raleigh, NC (United States)
  2. Korea Research Inst. of Standards and Science, Daejeon (Korea)
  3. Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States)
  4. Naval Research Lab. (NRL), Washington, DC (United States)
  5. KBR, Beavercreek, OH (United States)
  6. Argonne National Lab. (ANL), Lemont, IL (United States). Center for Nanoscale Materials
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Air Force Office of Scientific Research (AFOSR); Defense University Research Instrumentation Program (DURIP)
OSTI Identifier:
1632271
Alternate Identifier(s):
OSTI ID: 1605945
Grant/Contract Number:  
AC02-06CH11357; FA8750-15-3-6003; FA9550-15-0001; FA2386-18-1-4104; N000141010807; AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Macromolecular Materials and Engineering
Additional Journal Information:
Journal Volume: 305; Journal Issue: 5; Journal ID: ISSN 1438-7492
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Fabry-Perot cavity; linear polarizers; mid-wavelength infrared; organically modified chalcogenides; sulfur polymers

Citation Formats

Islam, Md Didarul, Kim, Jun Oh, Ko, Yeongun, Ku, Zahyun, Boyd, Darryl A., Smith, Evan M., Nguyen, Vinh Q., Myers, Jason D., Baker, Colin C., Kim, Woohong, Sanghera, Jasbinder S., Czaplewski, David A., Urbas, Augustine M., Genzer, Jan, and Ryu, Jong E. Design of High Efficient Mid-Wavelength Infrared Polarizer on ORMOCHALC Polymer. United States: N. p., 2020. Web. https://doi.org/10.1002/mame.202000033.
Islam, Md Didarul, Kim, Jun Oh, Ko, Yeongun, Ku, Zahyun, Boyd, Darryl A., Smith, Evan M., Nguyen, Vinh Q., Myers, Jason D., Baker, Colin C., Kim, Woohong, Sanghera, Jasbinder S., Czaplewski, David A., Urbas, Augustine M., Genzer, Jan, & Ryu, Jong E. Design of High Efficient Mid-Wavelength Infrared Polarizer on ORMOCHALC Polymer. United States. https://doi.org/10.1002/mame.202000033
Islam, Md Didarul, Kim, Jun Oh, Ko, Yeongun, Ku, Zahyun, Boyd, Darryl A., Smith, Evan M., Nguyen, Vinh Q., Myers, Jason D., Baker, Colin C., Kim, Woohong, Sanghera, Jasbinder S., Czaplewski, David A., Urbas, Augustine M., Genzer, Jan, and Ryu, Jong E. Sun . "Design of High Efficient Mid-Wavelength Infrared Polarizer on ORMOCHALC Polymer". United States. https://doi.org/10.1002/mame.202000033. https://www.osti.gov/servlets/purl/1632271.
@article{osti_1632271,
title = {Design of High Efficient Mid-Wavelength Infrared Polarizer on ORMOCHALC Polymer},
author = {Islam, Md Didarul and Kim, Jun Oh and Ko, Yeongun and Ku, Zahyun and Boyd, Darryl A. and Smith, Evan M. and Nguyen, Vinh Q. and Myers, Jason D. and Baker, Colin C. and Kim, Woohong and Sanghera, Jasbinder S. and Czaplewski, David A. and Urbas, Augustine M. and Genzer, Jan and Ryu, Jong E.},
abstractNote = {While an organically modified chalcogenide (ORMOCHALC) can be used to fabricate a polymeric mid-wavelength infrared (MWIR) polarizer with competitive extinction ratio compared to the commercial wire-grid polarizers, which are composed of fragile inorganic materials, there is still a knowledge gap regarding the systematic design process to obtain high transmission efficiency and extinction ratio. As such, a computational parameter study for design optimization is conducted with the geometric parameters of the bilayer grating ORMOCHALC polarizer. The computational study shows that the Fabry–Pérot cavity is the primary mechanism that determines the transmission behaviors and the extinction ratio. A bilayer grating design, guided by the parameter study, is realized through the thermal nanoimprint and metal deposition processes. The extinction ratios measured with the Fourier-transform infrared are 245, 304, and 351 at the wavelength of 3, 4, and 5 μm, respectively. Compared to the state-of-the-art of the polymeric MWIR linear polarizers, the extinction ratio is improved by 1.4 times, and the transmission efficiency is increased by 2.5 times. Theoretical analysis with the multiple-layer model based on the transfer matrix method predicts a matched transmission behavior with the experiment and a full-wave electromagnetic simulation.},
doi = {10.1002/mame.202000033},
journal = {Macromolecular Materials and Engineering},
number = 5,
volume = 305,
place = {United States},
year = {2020},
month = {3}
}

Works referenced in this record:

The Wire Grid as a Near-Infrared Polarizer
journal, January 1960

  • Bird, George R.; Parrish, Maxfield
  • Journal of the Optical Society of America, Vol. 50, Issue 9
  • DOI: 10.1364/JOSA.50.000886

A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism
journal, September 2015

  • Bhattarai, Khagendra; Ku, Zahyun; Silva, Sinhara
  • Advanced Optical Materials, Vol. 3, Issue 12
  • DOI: 10.1002/adom.201500231

New Infrared Transmitting Material via Inverse Vulcanization of Elemental Sulfur to Prepare High Refractive Index Polymers
journal, March 2014

  • Griebel, Jared J.; Namnabat, Soha; Kim, Eui Tae
  • Advanced Materials, Vol. 26, Issue 19
  • DOI: 10.1002/adma.201305607

Solution processable, cross-linked sulfur polymers as solid electrolytes in dye-sensitized solar cells
journal, January 2015

  • Liu, Peng; Gardner, James M.; Kloo, Lars
  • Chemical Communications, Vol. 51, Issue 78
  • DOI: 10.1039/C5CC04822B

Elemental sulfur
journal, June 1976


Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces
journal, September 2017


Infrared detectors: status and trends
journal, January 2003


Cross-Linked Sulfur-Selenium Polymers as Hole-Transporting Materials in Dye-Sensitized Solar Cells and Perovskite Solar Cells
journal, May 2017


Characterizing nanoimprint profile shape and polymer flow behavior using visible light angular scatterometry
journal, January 2007

  • Al-Assaad, Rayan M.; Regonda, Suresh; Tao, Li
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 25, Issue 6
  • DOI: 10.1116/1.2800327

Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography
journal, July 2005


Applications of chalcogenide glass optical fibers
journal, December 2002


Polyphosphazenes with High Refractive Indices: Synthesis, Characterization, and Optical Properties
journal, August 1995

  • Olshavsky, Michael A.; Allcock, Harry R.
  • Macromolecules, Vol. 28, Issue 18
  • DOI: 10.1021/ma00122a028

A Survey on Gas Sensing Technology
journal, July 2012


Chalcogenide Hybrid Inorganic/Organic Polymers: Ultrahigh Refractive Index Polymers for Infrared Imaging
journal, April 2017


Optical transmission through double-layer metallic subwavelength slit arrays
journal, January 2006


Antireflection Coating Using Metamaterials and Identification of Its Mechanism
journal, August 2010


Effect of surface roughness and complex indices of refraction on polarized thermal emission
journal, January 2005


High refractive index polymers: fundamental research and practical applications
journal, January 2009

  • Liu, Jin-gang; Ueda, Mitsuru
  • Journal of Materials Chemistry, Vol. 19, Issue 47
  • DOI: 10.1039/b909690f

Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching
journal, March 2005


Wire Grid Infrared Polarizer
journal, January 1965

  • Young, J. B.; Graham, H. A.; Peterson, E. W.
  • Applied Optics, Vol. 4, Issue 8
  • DOI: 10.1364/AO.4.001023

Advances in polymer integrated optics
journal, January 2000

  • Eldada, L.; Shacklette, L. W.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, Issue 1
  • DOI: 10.1109/2944.826873

Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries
journal, October 2016


Mid-infrared materials and devices on a Si platform for optical sensing
journal, February 2014


Compact, high performance hyperspectral systems design and applications
conference, June 2015

  • Ziph-Schatzberg, Leah; Woodman, Patrick; Nakanishi, Keith
  • SPIE Sensing Technology + Applications, SPIE Proceedings
  • DOI: 10.1117/12.2177564

Enhanced facial recognition for thermal imagery using polarimetric imaging
journal, January 2014

  • Gurton, Kristan P.; Yuffa, Alex J.; Videen, Gorden W.
  • Optics Letters, Vol. 39, Issue 13
  • DOI: 10.1364/OL.39.003857

History of infrared detectors
journal, January 2012


High Refractive Index Copolymers with Improved Thermomechanical Properties via the Inverse Vulcanization of Sulfur and 1,3,5-Triisopropenylbenzene
journal, September 2016


A biologically inspired analog IC for visual collision detection
journal, November 2005

  • Harrison, R. R.
  • IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 52, Issue 11
  • DOI: 10.1109/TCSI.2005.853517

On-chip mid-infrared gas detection using chalcogenide glass waveguide
journal, April 2016

  • Han, Z.; Lin, P.; Singh, V.
  • Applied Physics Letters, Vol. 108, Issue 14
  • DOI: 10.1063/1.4945667

Third-generation infrared photodetector arrays
journal, May 2009

  • Rogalski, A.; Antoszewski, J.; Faraone, L.
  • Journal of Applied Physics, Vol. 105, Issue 9
  • DOI: 10.1063/1.3099572

Polarization imaging: principles and integrated polarimeters
journal, December 2002


A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure
journal, November 2016

  • Jeon, Jiyeon; Bhattarai, Khagendra; Kim, Deok-Kee
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep36190

Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery
journal, January 2010

  • Felton, M.; Gurton, K. P.; Pezzaniti, J. L.
  • Optics Express, Vol. 18, Issue 15
  • DOI: 10.1364/OE.18.015704

Design and Synthesis of High Refractive Index Polymers. II
journal, January 1992

  • Minns, Richard A.; Gaudiana, Russell A.
  • Journal of Macromolecular Science, Part A, Vol. 29, Issue 1
  • DOI: 10.1080/10101329208054104

Sustainable Polysulfides for Oil Spill Remediation: Repurposing Industrial Waste for Environmental Benefit
journal, April 2018

  • Worthington, Max J. H.; Shearer, Cameron J.; Esdaile, Louisa J.
  • Advanced Sustainable Systems, Vol. 2, Issue 6
  • DOI: 10.1002/adsu.201800024

Room-temperature mid-infrared laser sensor for trace gas detection
journal, January 1997

  • Töpfer, Thomas; Petrov, Konstantin P.; Mine, Yasuharu
  • Applied Optics, Vol. 36, Issue 30
  • DOI: 10.1364/AO.36.008042

Synthesis and properties of highly refractive polyimides derived from fluorene-bridged sulfur-containing dianhydrides and diamines
journal, December 2007

  • Terraza, Claudio A.; Liu, Jin-Gang; Nakamura, Yasuhiro
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 46, Issue 4
  • DOI: 10.1002/pola.22492

Preparation of Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur
journal, November 2014

  • Griebel, Jared J.; Nguyen, Ngoc A.; Astashkin, Andrei V.
  • ACS Macro Letters, Vol. 3, Issue 12
  • DOI: 10.1021/mz500678m

ORMOCHALCs: organically modified chalcogenide polymers for infrared optics
journal, January 2017

  • Boyd, D. A.; Baker, C. C.; Myers, J. D.
  • Chemical Communications, Vol. 53, Issue 1
  • DOI: 10.1039/C6CC08307B

Some Electrical and Optical Properties of ZnSe
journal, October 1961

  • Aven, M.; Marple, D. T. F.; Segall, B.
  • Journal of Applied Physics, Vol. 32, Issue 10
  • DOI: 10.1063/1.1777056

Mid-infrared wire-grid polarizer with silicides
journal, January 2008

  • Yamada, Itsunari; Kintaka, Kenji; Nishii, Junji
  • Optics Letters, Vol. 33, Issue 3
  • DOI: 10.1364/OL.33.000258

High Transparency Infrared Materialsâ€
journal, October 1976


Digital infrared breast scan shows promise for detecting cancer
journal, September 2010


Sulfur and Its Role In Modern Materials Science
journal, November 2016


High refractive index organic–inorganic nanocomposites: design, synthesis and application
journal, January 2009

  • Lü, Changli; Yang, Bai
  • Journal of Materials Chemistry, Vol. 19, Issue 19
  • DOI: 10.1039/b816254a

Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature
journal, January 2007

  • Kitamura, Rei; Pilon, Laurent; Jonasz, Miroslaw
  • Applied Optics, Vol. 46, Issue 33
  • DOI: 10.1364/AO.46.008118

Sulfur-Containing Poly(meth)acrylates with High Refractive Indices and High Abbe’s Numbers
journal, June 2008

  • Okutsu, Rie; Ando, Shinji; Ueda, Mitsuru
  • Chemistry of Materials, Vol. 20, Issue 12
  • DOI: 10.1021/cm800432p

Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring
journal, June 2017

  • Scafutto, Rebecca Del'Papa Moreira; de Souza Filho, Carlos Roberto; de Oliveira, Wilson José
  • ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 128
  • DOI: 10.1016/j.isprsjprs.2017.03.009

Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W
journal, January 1985

  • Ordal, M. A.; Bell, Robert J.; Alexander, R. W.
  • Applied Optics, Vol. 24, Issue 24
  • DOI: 10.1364/AO.24.004493

Production of complex chalcogenide glass optics by molding for thermal imaging
journal, October 2003


Biologically Inspired CMOS Image Sensor for Fast Motion and Polarization Detection
journal, March 2013

  • Sarkar, Mukul; Bello, David San Segundo; van Hoof, Chris
  • IEEE Sensors Journal, Vol. 13, Issue 3
  • DOI: 10.1109/JSEN.2012.2234101

Fabry-Perot cavity resonance enabling highly polarization-sensitive double-layer gold grating
journal, October 2018


Measurements of the effect of surface roughness on the polarization state of thermally emitted radiation
journal, January 1994


Porous inverse vulcanised polymers for mercury capture
journal, January 2016

  • Hasell, T.; Parker, D. J.; Jones, H. A.
  • Chemical Communications, Vol. 52, Issue 31
  • DOI: 10.1039/C6CC00938G

Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for lithium sulfur batteries
journal, July 2016


The use of elemental sulfur as an alternative feedstock for polymeric materials
journal, April 2013

  • Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1624