DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The POLARBEAR Fourier transform spectrometer calibrator and spectroscopic characterization of the POLARBEAR instrument

Abstract

Here we describe the Fourier Transform Spectrometer (FTS) used for in-field testing of the POLARBEAR receiver, an experiment located in the Atacama Desert of Chile which measures the cosmic microwave background (CMB) polarization. The POLARBEAR-FTS (PB-FTS) is a Martin-Puplett interferometer designed to couple to the Huan Tran Telescope (HTT) on which the POLARBEAR receiver is installed. The PB-FTS measured the spectral response of the POLARBEAR receiver with signal-to-noise ratio >20 for ~69% of the focal plane detectors due to three features: a high throughput of 15.1 sr cm2, optimized optical coupling to the POLARBEAR optics using a custom designed output parabolic mirror, and a continuously modulated output polarizer. The PB-FTS parabolic mirror is designed to mimic the shape of the 2.5 m-diameter HTT primary reflector, which allows for optimum optical coupling to the POLARBEAR receiver, reducing aberrations and systematics. One polarizing grid is placed at the output of the PB-FTS and modulated via continuous rotation. This modulation allows for decomposition of the signal into different harmonics that can be used to probe potentially pernicious sources of systematic error in a polarization-sensitive instrument. The high throughput and continuous output polarizer modulation features are unique compared to other FTS calibrators used inmore » the CMB field. In-field characterization of the POLARBEAR receiver was accomplished using the PB-FTS in April 2014. We discuss the design, construction, and operation of the PB-FTS and present the spectral characterization of the POLARBEAR receiver. We introduce future applications for the PB-FTS in the next-generation CMB experiment, the Simons Array.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [2];  [5];  [6]; ORCiD logo [7];  [8];  [2]; ORCiD logo [9];  [7];  [10];  [1];  [1]; ORCiD logo [2];  [11];  [2]; ORCiD logo [10];  [2] more »;  [12];  [7]; ORCiD logo [2];  [13];  [14];  [15];  [2]; ORCiD logo [16] « less
  1. Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study,The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
  2. Department of Physics, University of California, San Diego, California 92093-0424, USA
  3. Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
  4. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA;Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago, Chile
  5. Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
  6. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
  7. Department of Physics, University of California, Berkeley, California 94720, USA
  8. Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study,The University of Tokyo, Kashiwa, Chiba 277-8583, Japan;Department of Physics, University of California, Berkeley, California 94720, USA
  9. Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
  10. High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
  11. Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;Department of Physics, University of California, Berkeley, California 94720, USA
  12. Department of Physics, Stanford University, Stanford, California 94305, USA
  13. Department of Physics, University of California, San Diego, California 92093-0424, USA;National Astronomical Research Institute of Thailand, Chiangmai, Thailand
  14. Department of Physics, Kyoto University, Kyoto 606-8502, Japan
  15. High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan;SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
  16. Radio Astronomy Laboratory, University of California, Berkeley, California 94720, USA
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); Japan Society for the Promotion of Science (JSPS); Comisión Nacional de Investigación Científica y Tecnológica (CONICYT); Australian Research Council; World Premier International Research Center Initiative (WPI); Ministry of Education, Culture, Sports, Science and Technology (MEXT); European Research Council (ERC)
Contributing Org.:
POLARBEAR Collaboration
OSTI Identifier:
1632130
Grant/Contract Number:  
AC02-05CH11231; JP17F17025; 77047; 1130777; 1171811; FT150100074; 18K13558; 18H04347; 616170
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 90; Journal Issue: 11; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; optical devices; telescopes; cosmic microwave background; Fourier transform spectroscopy; interferometry; polarization; optical reflectors; geometrical optics

Citation Formats

Matsuda, F., Lowry, L., Suzuki, A., Aguilar Fáundez, M., Arnold, K., Barron, D., Bianchini, F., Cheung, K., Chinone, Y., Elleflot, T., Fabbian, G., Goeckner-Wald, N., Hasegawa, M., Kaneko, D., Katayama, N., Keating, B., Lee, A. T., Navaroli, M., Nishino, H., Paar, H., Puglisi, G., Richards, P. L., Seibert, J., Siritanasak, P., Tajima, O., Takatori, S., Tsai, C., and Westbrook, B. The POLARBEAR Fourier transform spectrometer calibrator and spectroscopic characterization of the POLARBEAR instrument. United States: N. p., 2019. Web. doi:10.1063/1.5095160.
Matsuda, F., Lowry, L., Suzuki, A., Aguilar Fáundez, M., Arnold, K., Barron, D., Bianchini, F., Cheung, K., Chinone, Y., Elleflot, T., Fabbian, G., Goeckner-Wald, N., Hasegawa, M., Kaneko, D., Katayama, N., Keating, B., Lee, A. T., Navaroli, M., Nishino, H., Paar, H., Puglisi, G., Richards, P. L., Seibert, J., Siritanasak, P., Tajima, O., Takatori, S., Tsai, C., & Westbrook, B. The POLARBEAR Fourier transform spectrometer calibrator and spectroscopic characterization of the POLARBEAR instrument. United States. https://doi.org/10.1063/1.5095160
Matsuda, F., Lowry, L., Suzuki, A., Aguilar Fáundez, M., Arnold, K., Barron, D., Bianchini, F., Cheung, K., Chinone, Y., Elleflot, T., Fabbian, G., Goeckner-Wald, N., Hasegawa, M., Kaneko, D., Katayama, N., Keating, B., Lee, A. T., Navaroli, M., Nishino, H., Paar, H., Puglisi, G., Richards, P. L., Seibert, J., Siritanasak, P., Tajima, O., Takatori, S., Tsai, C., and Westbrook, B. Tue . "The POLARBEAR Fourier transform spectrometer calibrator and spectroscopic characterization of the POLARBEAR instrument". United States. https://doi.org/10.1063/1.5095160. https://www.osti.gov/servlets/purl/1632130.
@article{osti_1632130,
title = {The POLARBEAR Fourier transform spectrometer calibrator and spectroscopic characterization of the POLARBEAR instrument},
author = {Matsuda, F. and Lowry, L. and Suzuki, A. and Aguilar Fáundez, M. and Arnold, K. and Barron, D. and Bianchini, F. and Cheung, K. and Chinone, Y. and Elleflot, T. and Fabbian, G. and Goeckner-Wald, N. and Hasegawa, M. and Kaneko, D. and Katayama, N. and Keating, B. and Lee, A. T. and Navaroli, M. and Nishino, H. and Paar, H. and Puglisi, G. and Richards, P. L. and Seibert, J. and Siritanasak, P. and Tajima, O. and Takatori, S. and Tsai, C. and Westbrook, B.},
abstractNote = {Here we describe the Fourier Transform Spectrometer (FTS) used for in-field testing of the POLARBEAR receiver, an experiment located in the Atacama Desert of Chile which measures the cosmic microwave background (CMB) polarization. The POLARBEAR-FTS (PB-FTS) is a Martin-Puplett interferometer designed to couple to the Huan Tran Telescope (HTT) on which the POLARBEAR receiver is installed. The PB-FTS measured the spectral response of the POLARBEAR receiver with signal-to-noise ratio >20 for ~69% of the focal plane detectors due to three features: a high throughput of 15.1 sr cm2, optimized optical coupling to the POLARBEAR optics using a custom designed output parabolic mirror, and a continuously modulated output polarizer. The PB-FTS parabolic mirror is designed to mimic the shape of the 2.5 m-diameter HTT primary reflector, which allows for optimum optical coupling to the POLARBEAR receiver, reducing aberrations and systematics. One polarizing grid is placed at the output of the PB-FTS and modulated via continuous rotation. This modulation allows for decomposition of the signal into different harmonics that can be used to probe potentially pernicious sources of systematic error in a polarization-sensitive instrument. The high throughput and continuous output polarizer modulation features are unique compared to other FTS calibrators used in the CMB field. In-field characterization of the POLARBEAR receiver was accomplished using the PB-FTS in April 2014. We discuss the design, construction, and operation of the PB-FTS and present the spectral characterization of the POLARBEAR receiver. We introduce future applications for the PB-FTS in the next-generation CMB experiment, the Simons Array.},
doi = {10.1063/1.5095160},
journal = {Review of Scientific Instruments},
number = 11,
volume = 90,
place = {United States},
year = {Tue Nov 19 00:00:00 EST 2019},
month = {Tue Nov 19 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Offset Multireflector Antennas with Perfect Pattern Symmetry and Polarization Discrimination
journal, September 1978


Joint Analysis of BICEP2/ Keck Array and Planck Data
journal, March 2015


The POLARBEAR experiment
conference, September 2012

  • Kermish, Zigmund D.; Ade, Peter; Anthony, Aubra
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.926354

The POLARBEAR Cosmic Microwave Background Polarization Experiment
journal, January 2014


The bolometric focal plane array of the POLARBEAR CMB experiment
conference, September 2012

  • Arnold, K.; Ade, P. A. R.; Anthony, A. E.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.927057

A Measurement of the Cosmic Microwave Background B -mode Polarization Power Spectrum at Subdegree Scales from Two Years of polarbear Data
journal, October 2017


Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope
journal, March 2016

  • Datta, R.; Austermann, J.; Beall, J. A.
  • Journal of Low Temperature Physics, Vol. 184, Issue 3-4
  • DOI: 10.1007/s10909-016-1553-5

Polarised interferometric spectrometry for the millimetre and submillimetre spectrum
journal, June 1970


2017 upgrade and performance of BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization
conference, July 2018

  • Ade, Peter A.; Ahmed, Zeeshan; Aikin, Randol
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
  • DOI: 10.1117/12.2313854

Antenna tolerance theory—A review
journal, January 1966


The Quest for B Modes from Inflationary Gravitational Waves
journal, September 2016


Common-mode rejection in Martin–Puplett spectrometers for astronomical observations at millimeter wavelengths
journal, January 2015

  • D’Alessandro, Giuseppe; de Bernardis, Paolo; Masi, Silvia
  • Applied Optics, Vol. 54, Issue 31
  • DOI: 10.1364/ao.54.009269

Design for the COBE far-infrared absolute spectrophotometer
conference, October 1993

  • Mather, John C.; Fixsen, Dale J.; Shafer, Richard A.
  • SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.157823

Keck array and BICEP3: spectral characterization of 5000+ detectors
conference, August 2014

  • Karkare, K. S.; Ade, P. A. R.; Ahmed, Z.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2056779

Optical Characterization of the SPT-3G Camera
journal, May 2018


The Primordial Inflation Explorer (PIXIE)
conference, August 2014

  • Kogut, Alan; Chuss, David T.; Dotson, Jessie L.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2056840

A Survey of the Theory of Wire Grids
journal, May 1962


Theory of a Double Polarization Modulated Martin-Puplett Interferometer
journal, September 1990


The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
journal, September 2018

  • Westbrook, B.; Ade, P. A. R.; Aguilar, M.
  • Journal of Low Temperature Physics, Vol. 193, Issue 5-6
  • DOI: 10.1007/s10909-018-2059-0

The bolometric focal plane array of the Polarbear CMB experiment
text, January 2012


A Joint Analysis of BICEP2/Keck Array and Planck Data
text, January 2015


The Quest for B Modes from Inflationary Gravitational Waves
text, January 2015


Polarised interferometric spectrometry for the millimetre and submillimetre spectrum
journal, June 1970